MUSIC (1) A scale. (2) A species of scale, as, major mode, minor mode, Greek modes, etc. [Dictionary of Music]

A system of scales in ancient Greek and early church music made up of octaves and using only the notes represented by the white keys of the piano.

SOUND & VIBRATION Frequency or resonance pattern in a media such as Chladni Plate Vibrations or Cymatics.

Keely's Modes of Vibration

1: RADIATING, ENHARMONIC, POSITIVE ATTRACTION, CELESTIAL, (Entropic); Attracted to the external Universe.

2: FOCALIZING, HARMONIC, NEGATIVE ATTRACTION, TERRESTRIAL, (Syntropic); The intensification of individuality or materiality of matter.
3: DOMINANT; That controlling tendency governing the ascendancies of the first two.

All three of these (modes) must be present in every flow of energy and are always present in the ratio 3:6:9. [LAWS OF ENERGY]

There are properties or modes of vibration which can direct the component molecular vibrations of a mass to the neutral center of that mass. These modes of vibration are called "neutral attraction", "neutral affinity", "negative attraction" or "polar negative attraction." [MASS VIBRATIONS]

Normal Mode
A normal mode of an oscillating system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The motion described by the normal modes is called resonance. The frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge or molecule, has a set of normal modes that depend on its structure, materials and boundary conditions.

When relating to music, normal modes of vibrating instruments (strings, air pipes, drums, etc.) are called "harmonics" or "overtones".

The most general motion of a system is a superposition of its normal modes. The modes are normal in the sense that they can move independently, that is to say that an excitation of one mode will never cause motion of a different mode.

The concept of normal modes also finds application in wave theory, optics, quantum mechanics, and molecular dynamics." Wikipedia, Normal Mode



The Greeks most probably constructed their musical tetrachords in a symmetrical order in analogy with their sculpture, and showed the ear identical with the eye in its love of symmetry. With them, therefore, the Dorian mode would have a certain pre-eminence. Beginning this mode on D, without knowing the musical mystery that resides in D, they had two tetrachords with the semitones symmetrically in the middle in one mode; it was next possible for them to arrange in pairs, symmetrically, the other tetrachords.

D8 E5 F9 G8 A9 B5 C9 D
E5 F9 G8 A9 B5 C9 D8 E — C9 D8 E5 F9 G8 A9 B5 C
F9 G8 A9 B5 C9 D8 F5 F — B5 C9 D8 E5 F9 G8 A9 B
C9 D8 E5 F9 G8 A9 B5 C — E5 F9 G8 A9 B5 C9 D8 E
B5 C9 D8 E5 F9 G8 A9 B — F9 G8 A9 B5 C9 D8 E5 F
A9 B5 C9 D8 E5 F9 G8 A — G8 A9 B5 C9 D8 E5 F9 G
G8 A9 B5 C9 D8 E5 F9 G — A9 B5 C8 D9 E5 F9 G8 A

[Scientific Basis and Build of Music, page 45]

Here, then, we have an order of modes entirely symmetical in pairs placed thus; the only mode that can stand alone being the Dorian, built on D, whose duality has been discovered to reside in itself. All this build of symmetry, which was the watchword of Greek art, as it is also one of the watchwords of Nature, presupposes that the tones of the scale, with lesser and larger intervals lying between them, were resting in their ears exactly as they are in ours,1 and as they are in all humanity, save where it has sunk down into the savage condition, benighted in the evil that is in the world. It is not to be concluded that the Dorian mode is Nature's primitive scale, although it might have a certain pre-eminence [Scientific Basis and Build of Music, page 45]

among the Greeks on account of having symmetry in itself. The primitive scale was doubtless that which is the model of all major music; and our minor model is its dual, as Ramsay has shown, which in its genesis indicates the duality of all the rest of the notes, although it is not probable that the Greeks saw the musical elements in this light. It is remarkable and significant that in their modes the Greeks did not lift up the scale of Nature into different pitches, preserving its model form as we do in our twelve major scales, but keeping the model form at one pitch they built up their symmetrical tetrachords, allowing the larger and lesser tones of the primitive scale to arrange themselves in every variety of place, as we have shown in the table of tetrachord modes above. Without seeing the genetic origin of music's duality they were led to arrange the modes by symmetry, which is one of the phases of duality. Symmetry is duality in practice. It may not always be apparent how symmetry originates in Nature; but in music, the art of the ear, duality emerges in the genesis of the minor scale; in the true mathematical build of the major on the root of the major subdominant F, and the true relation of the minor to it in the inverse genesis descending from the top of the minor dominant B. [Scientific Basis and Build of Music, page 46]

There was, then, something of truth and beauty in the Greek modes as seen in the light now thrown upon them by the Law of Duality, at last discerned, and as now set forth in the genesis and wedlock of the major and minor scales. The probably symmetrical arrangement of the modes, all unwitting to them, is an interesting exhibition of the true duality of the notes, which may be thus set in view by duality lines of indication. We now know that B is the dual of F, G the dual of A, C the dual of E, and D minor the dual of D major. Now look at the Greek modes symmetrically arranged:


Thus seen they are perfectly illustrative of the duality of music as it springs up in the genetic scales. The lines reach from note to note of the duals. [Scientific Basis and Build of Music, page 46]

The triplet B, D, F, has been called the imperfect triad, because in it the two diatonic semitones, B-C and E-F, and the two minor thirds which they constitute, come together in this so-called imperfect fifth. But instead of deserving any name indicating imperfection, this most interesting triad is the Diatonic germ of the chromatic chord, and of the chromatic system of chords. Place this triad to precede the tonic chord of the key of C major, and there are two semitonic progressions. Place it to precede the tonic chord of the key of F# major, and there are three semitonic progressions. Again, if we place it to precede the tonic chord of the key of A minor, there are two semitonic progressions; but make it precede the tonic chord of E♭ minor, and there are three semitonic progressions. This shows that the chromatic chord has its germ in, and its outgrowth from the so-called "natural notes," that is notes without flats or sharps, notes with white keys; and that these natural notes furnish, with only the addition of either A♭ from the major scale or G# from the minor, a full chromatic chord for one major and one minor chord, and a secondary chromatic chord for one more in each mode. [Scientific Basis and Build of Music, page 52]

not mathematically identical, the genetic number of the last D, the top of the dominant major, being 27, and that of the first D, the root of the subdominant minor, being 26 2/3. Well, in the triplets of the minor we have minor thirds below their middles, D-F, A-C, E-G. In the triplets of the major we have minor thirds above their middles, A-C, E-G, B-D. But here between the triplets of the two modes we have a triplet which has minor third both below and above its middle note, two minor thirds and nothing else, B-D-F. Here, then, the Diatonic progression chords presents us with a 3-note Chromatic chord, and marchals us the way that we must go to find [Scientific Basis and Build of Music, page 54]

This great genetic scale, the all-producer, the all-container, extends over six octaves on each side; for it is not till high in the sixth octave we get B in the major, and it is not till low in the sixth octave that we get F in the minor. It is in the fifth octave, however, that the note which is the distinctive mark of the masculine and feminine modes is generated. D27 in the major, and D26 2/3 in the minor, distinguishes the sex of the modes, and shows which is the head and which the helpmeet in this happy family.2 On the major side F, the root of the subdominant chord, that is the chord which is a fifth below the key-note C, is the root of all. This is the beginning of this creation. If we call the vibration-number of F one, for simplicity's sake, then F1 is multiplied by 3 and by 5, which natural process begets its fifth, C, and its third, A; this is the root, top, and middle of the first chord. From this top, C3, grows the next chord by the same natural process, multiplying by 3 and by 5; thus are produced the fifth and third of the second chord, G and E. From the top of this second chord grows the third and last chord, by the repetition of the same natural process; multiplying G9 by 3 and by 5 we [Scientific Basis and Build of Music, page 66]

At the extremes of these two operations we find D the top of the major dominant, and D the root of the minor subdominant; and while all the other notes, whether produced by multiplication of the major roots or division of the minor tops, are the same in their ratio-numbers, the two D's, by no speciality of production, are nevertheless specifically diverse by one comma in their vibration-number, and make a corresponding diversity in the intervals of the two modes. These, the Ray and Rah of the Sol Fa expression, originate a very interesting and somewhat mysterious feature in this great twofold genetic scale. [Scientific Basis and Build of Music, page 67]

Helmholtz falls into a mistake when he says- "The system of scales and modes, and all the network of harmony founded on them, do not seem to rest on any immutable laws of Nature, but are due to the aesthetical principle which is constantly subject to change, according to the progressive development of taste." It is true, indeed, that the ear is the last judge; but the ear is to judge something which it does not create, but simply judges. Nature is the maker of music in its scales and modes. The styles of composition may vary with successive generations, and in the different nations of men; but the scientific basis of music is another thing. It is a thing, belonging to the aesthetic element of our being and our environment; it is under the idea of the beautiful, rather than the idea of the useful or the just; but all these various aspects of our relation to creation have their laws which underlie whatever changes may be fashionable at any period in our practice. If the clang-farbe of a musical tone, that is, its quality or timbre, depends on the number and comparative strength of the partial tones or harmonics of which it is composed, and this is considered to be the great discovery of Helmholtz, it cannot be that the scales and modes are at the caprice of the fickle and varied taste of times and individuals, for these partials are under Nature's mathematical usages, and quite beyond any taste for man's to change. It is these very partials or harmonics brought fully into view as a system, and they lead us back and back till they have brought us to the great all-prevading law of gravitation; it is these very partials, which clothe as an audible halo every musical sound, which constitute the musical system of sounds. [Scientific Basis and Build of Music, page 78]

This plate is a representation of the area of a scale; the major scale, when viewed with the large hemisphere, lowest; the minor when viewed the reverse way. It is here pictorially shown that major and minor does not mean larger and smaller, for both modes occupy the same area, and have in their structure the same intervals, though standing in a different order. It is this difference in structural arrangement of the intervals which characterizes the one as masculine and the other as feminine, which are much preferable to the major and minor as distinctive names for the two modes. Each scale, in both its modes, has three Fifths - subdominant, tonic, and dominant. The middle fifth is the tonic, and its lowest note the key-note of the scale, or of any composition written in this scale. The 53 commas of the Octave are variously allotted in its seven notes - 3 of them have 9 commas, 2 have 8, and 2 have 5. The area of the scale, however, has much more than the octave; it is two octaves, all save the minor third D-F, and has 93 commas. This is the area alike of masculine and feminine modes. The two modes are here shown as directly related, as we might figuratively say, in their marriage relation. The law of Duality, which always emerges when the two modes are seen in their relationship, is here illustrated, and the dual notes are indicated by oblique lines across the pairs. [Scientific Basis and Build of Music, page 106]

mathematical genesis, as seen in its D being a comma higher than that of the minor. This gravity and buoyancy of the modes is a striking feature of them. In the Thirds it is different from the Fifths; the larger hemisphere of each third seems gravitating toward the center of the tonic chord. The area of the scale has then the aspect of a planet with its north and south poles, and pervaded by a tendency towards the center; the center itself being neutral as to motion. [Scientific Basis and Build of Music, page 107]

The Octave being divided into 53 commas, the intervals are measured, as usual, by these, the large second having 9-commas, the medium second having 8, and the small second 5. These measures are then made each the radius by which to draw hemispheres showing the various and comparative areas of the seconds. The comparative areas of the thirds are shown by the hemispheres of the seconds which compose them facing each other in pairs. The comma-measures of the various thirds thus determined are then made the radii by which to draw the two hemispheres of the fifths. The areas of the three fifths are identical, as also the attitudes of their unequal hemispheres. The attitude of the six thirds, on the other hand, in their two kinds, being reversed in the upper and under halves of the scale, their attitude gives them the appearance of being attracted towards the center of the tonic; while the attitude of the three fifths is all upward in the major, and all downward in the minor; their attraction being towards the common center of the twelve scales which Nature has placed between the second of the major and the fourth of the minor, as seen in the two D's of the dual genetic scale, - the two modes being thus seen, as it were, revolving [Scientific Basis and Build of Music, page 113]

round a common center which is lying between them, as the double stars do in the astral heavens. When this plate is reversed we have before us exactly the minor scale, and all the parts and attitudes related in exactly the inverse way, each to each, so perfect is the duality in unity of the two modes. [Scientific Basis and Build of Music, page 114]


The scales in this plate advance by semitones, not in their normal way by fifths; but their normal progress by fifths is shown by the spiral-ellipse line winding round under the stave and touching the ellipses containing the scales by semitonic advance; the scales being read to the right for the majors inside, and to the right for the minors outside. In each of the modes the scales are written in ♭s and #s, as is usual in signatures; and since the scales [Scientific Basis and Build of Music, page 116]

advance by semitones, the keys with ♭s and #s alternate in both modes. The open between G# and A♭ in the major, and between D# and E♭ in the minor, is closed in each mode, and the scale made one. The dotted lines across the plate lead from major to relative minor; and the solid spiral line starting from C, and winding left and right, touches the consecutive keys as they advance normally, because genetically, by fifths. The relative major and minor are in one ellipse at C and A; and in the ellipse right opposite this the relative to F# is D#, and that of G♭ and E♭, all in the same ellipse, and by one set of notes, but read, of course, both ways. [Scientific Basis and Build of Music, page 117]

This is a twofold mathematical table of the masculine and feminine modes of the twelve scales, the so-called major and relative minor. The minor is set a minor third below the major in every pair, so that the figures in which they are the same may be beside each other; and in this arrangement, in the fourth column in which the figures of the major second stand over the minor fourth, is shown in each pair the sexual note, the minor being always a comma lower than the major. An index finger points to this distinctive note. The note, however, which is here seen as the distinction of the feminine mode, is found in the sixth of the preceding masculine scale in every case, except in the first, where the note is D26 2/3. D is the Fourth of the octave scale of A minor, and the Second of the octave scale of C major. It is only on this note that the two modes differ; the major Second and the minor Fourth are the sexual notes in which each is itself, and not the other. Down this column of seconds and fourths will be seen this sexual distinction through all the twelve scales, they being in this table wholly developed upward by sharps. The minor is always left this comma behind by the comma-advance of the major. The major A in the key of C is 40, but in the key of G it has been advanced to 40 1/2; while in the key of E, this relative minor to G, the A is still 40, a comma lower, and thus it is all the way through the relative scales. This note is found by her own downward genesis from B, the top of the feminine dominant. But it will be remembered that this same B is the middle of the dominant of the masculine, and so the whole feminine mode is seen to be not a terminal, but a lateral outgrowth from the masculine. Compare Plate II., where the whole twofold yet continuous genesis is seen. The mathematical numbers in which the vibration-ratios are expressed are not those of concert pitch, but those in which they appear in the genesis of the scale which begins from F1, for the sake of having the simplest expression of numbers; and it is this series of numbers which is used, for the most part, in this work. It must not be supposed, however, by the young student that there is any necessity for this arrangement. The unit from which to begin may be any number; it may, if he chooses, be the concert-pitch-number of F. But let him take good heed that when he has decided what his unit will be there is no more coming and going, no more choosing by him; Nature comes in [Scientific Basis and Build of Music, page 117]

This plate sets forth the essential duality of the musical system of vibrations. It is a remarkable fact that the numbers of the vibrations of the major mode are the numbers for the string proportions of the minor mode; and vice versa, the string proportions in the major are the numbers of the vibrations in the minor. We have, however, to see that we use the proper notes and numbers; we must know the secret of Nature. This secret rests in the duality of the notes, and begins from the two D's. The center of gravity of the musical system of vibrations is found in the comma space between the two D's as they are found in the genesis of the two modes. In these two D's the vibration number and string proportions are nearly identical. Starting from this point as the center of gravity in the [Scientific Basis and Build of Music, page 118]

Another remarkable thing is that these dual numbers, when multiplied into each other, always come to 720. Now this number, as we see in the great genesis, corresponds to 1 in the major, being the point of departure for the development of the feminine mode, as 1 is the point of departure in the masculine mode. This 720 is the octave of 360, which is the number of the degrees of the circle, so divided in the hidden depths of human antiquity; and when F1 becomes F2, then B360 is the answering note and number in the dual system. All the notes in the masculine development are above F2; and all the notes in the feminine development are below B360. The unoccupied octave between F1 and F2 and that between B720 and B360 may be counted as the octave heads or roots of the two modes, and then F2 and B360 as the points from which the development of music's diversity begins; and it is noteworthy that the number of the degrees of the circle should be found in this connection. When was the circle so divided? Who divided it so? And why did he, the unknown, so divide it? Was Music's mystery known in that far-off day before the confusion of man's sinking history had blotted out so much of the pure knowledge of pristine days? [Scientific Basis and Build of Music, page 119]

Fig. 2. - In this figure the two modes are placed in their inverse relation, in order to show the notes standing opposite each other in their duality. Here the two D's come also opposite each other, inasmuch as in the two modes the C-D-E interval is inverted, becoming C D E in the one and E D C in the other. And so the 9-comma second between C and D in the major comes opposite the 9-comma second between D and E in the minor, and the two 8-comma seconds, of course, come opposite each other also. [Scientific Basis and Build of Music, page 120]

Fig. 4 is a setting of the minor and the major chord-scales, showing how they stand linked by notes in common in their direct sequence from dominant minor to dominant major. To each of the six chords is placed the first chromatic chord, showing how it resolves in its three-fold manner by 1, 2, and 3 semitonic progressions in each mode, and by 1 and 2 notes in common variously in each mode; and here again the law of duality is seen in its always symmetrical adjustments. Duality, when once clearly and familiarly come into possession of musicians, will be sure to become an operative rule and test-agent in composition. [Scientific Basis and Build of Music, page 121]

The inequality of the equinoctial points is a well-known fact. It will be seen how apparent this is in the developments of harmonies. From the moment that trinities depart from unity, the balance is unequal, and the repeated endeavours after closer union cause a perpetual restlessness. May not this want of equilibrium be the life or motive power of the entire universe, with its continuous struggle after concord, even to oneness? "Closer and closer union is the soul of perfect harmony." In tracing harmonies of tones and colours, the double tones of keyed instruments will be seen to correspond with the intermediate tints and shades of colours. The twelve notes, scales, and chords in the major and minor series, the meetings by fifths, &c., all agree so exactly in their mode of development, that if a piece of music is written correctly in colours with the intermediate tints and shades, the experienced musician can, as a rule, detect errors more quickly and surely with the eye than the ear, and the correct eye, even of a non-musical person, may detect technical errors. Although the arithmetical relation has been most useful in gaining the laws, it is not here entered upon; but numbers equally meet all the intricacies both of tones and colours. The bass notes have been omitted, in order to simplify the scheme. [Harmonies of Tones and Colours, The Arabian System of Music, page 21]

The diagram begins with C, the third space of the treble clef, as being more convenient to write than C, the lowest note in the bass clef. The life of musical sounds rising from a hidden fountain of life is shown by the chasms of keyed instruments between B and C, and E and F; their great use will be strikingly manifest as the developments proceed. The fundamental key-note C and its root F rise from the chasms. B, the twelfth key-note, and E, its root, sound the octave higher of the fountain B. The generation of harmonies is by one law a simple mode of difference. Each major major key-note and its tones embrace the eighteen tones of keyed instruments which all lie in order for use. The power and extent of each are complete in itself, rising and developing, not from any inherent property in matter, but from the life communicated to matter. In the whole process of harmony there are limits, and yet it is illimitable. Its laws compel each key-note to follow certain rules within certain bounds; each separate key-note, being the fountain of its own system, has its own point of rest, and series after series rise and enlarge, or fall and diminish infinitely. [Harmonies of Tones and Colours, Diagram I - The Eighteen Tones of Keyed Instruments, page 22a]

See Also

14.09 - Brintons Laws of Being
14.35.1 - Keely 3 6 and 9
Casimir cavity
Chladni Plate Vibrations
Debye Continuum
Dorian mode
dual genetic scale
feminine mode
Figure 1.12 - Naturally Occurring Frequencies Modes and Music Interval Relations
Greek modes
Laws of Being
masculine mode
mode of development
Modes of Vibration - Annotated
Modes of Vibration
Overtone Series
Phrygian Mode
Ramsay - PLATE XXVIII - The Two Modes Notes Pendulums
sexual note
Table 2 - Controlling Modes and Proportions
The Laws of Being

Created by Dale Pond. Last Modification: Monday March 22, 2021 04:25:57 MDT by Dale Pond.