Ramsay
This great genetic scale, the all-producer, the all-container, extends over six octaves on each side; for it is not till high in the sixth octave we get B in the major, and it is not till low in the sixth octave that we get F in the minor. It is in the fifth octave, however, that the note which is the distinctive mark of the masculine and feminine modes is generated. D27 in the major, and D26 2/3 in the minor, distinguishes the sex of the modes, and shows which is the head and which the helpmeet in this happy family.2 On the major side F, the root of the subdominant chord, that is the chord which is a fifth below the key-note C, is the root of all. This is the beginning of this creation. If we call the vibration-number of F one, for simplicity's sake, then F1 is multiplied by 3 and by 5, which natural process begets its fifth, C, and its third, A; this is the root, top, and middle of the first chord. From this top, C3, grows the next chord by the same natural process, multiplying by 3 and by 5; thus are produced the fifth and third of the second chord, G and E. From the top of this second chord grows the third and last chord, by the repetition of the same natural process; multiplying G9 by 3 and by 5 we [Scientific Basis and Build of Music, page 66]
Now we come to a remarkable arrangement of Nature. The minor does not grow in the same way out of this third chord's top. Two features come before us: first the minor chord grows out of the major, but it is taken not from the top but from the middle, from a rib out of his side. B, the middle of the major dominant chord; B, the last-born of the major genesis; B is the point of departure in the outgrowth of the minor mode. The feminine is a lateral growth from the masculine. Another feature: it grows downward, like a drooping ash or willow. Its first generated chord is its dominant, and its last is its subdominant. Its middle chord, like the middle one of the major, is its tonic. Still further, it is generated by division, not multiplication; B45 is divided by 3 and by 5 for the root and middle of this highest chord, E and G. E15 is divided by 3 and 5 for the root and middle of the tonic chord, A and C. A5 is divided by 3 and 5 for the root and middle of the lowest chord, D and F. Thus we have the whole generation of the elements of music, six generations of harmony, like the six days of creation. Up to this point the whole process and aspect is inverse; growing from a middle; growing downward; growing by division;- while the major is growing from the top; growing upward; growing by multiplication. But here the inverse aspect ends. The generating primes of the major are 3 and 5; 3 and 5 are also the generating primes of the minor. In this essential phase of their creation their comparison is direct, not inverse. [Scientific Basis and Build of Music, page 67]
At the extremes of these two operations we find D the top of the major dominant, and D the root of the minor subdominant; and while all the other notes, whether produced by multiplication of the major roots or division of the minor tops, are the same in their ratio-numbers, the two D's, by no speciality of production, are nevertheless specifically diverse by one comma in their vibration-number, and make a corresponding diversity in the intervals of the two modes. These, the Ray and Rah of the Sol Fa expression, originate a very interesting and somewhat mysterious feature in this great twofold genetic scale. [Scientific Basis and Build of Music, page 67]
common, to mingle with more chord-society. So those added thirds which constitute compound chords are like accomplishments acquired for this end, and they make such chords exceedingly interesting. The dominant assumes the root of the subdominant, and so becomes the dominant seventh that it may be affiliated with the subdominant chords. Inversely, the subdominant assumes the top of the dominant chord that it may be affiliated with the dominant. The major tonic may exceptionally be compounded with the top of the minor subdominant when it comes between that chord and its own dominant; and the minor tonic may in the same way assume the root of the major dominant when it comes between that chord and its subdominant. The minor subdominant D F A, and the major dominant G B D, are too great strangers to affiliate without some chord to introduce them; they seem to have one note in common, indeed, but we know that even these two D's are a comma apart, although one piano-key plays them both, and the F G and the A B are as foreign to each other as two seconds can be, each pair being 9 commas apart, and G A are 8 commas apart. In this case, as a matter of musical courtesy, the tonic chord comes in between; and when it is the minor subdominant that is to be introduced, the major tonic assumes the top of that chord, and then turns to its own major dominant and suavely gives the two to enter into fellowship; for the tonic received the minor subdominant through its semitonic E F, and carries it to the major dominant through its semitonic B C, along with C in common on the one side and G in common on the other. When it is the major dominant that is to be introduced to the minor subdominant the minor tonic fulfills the function, only the details are all reversed; it assumes the root of dominant, and by this note in common, and its A in common with its own subdominant, along with the semitonic second B C on the one hand and the semitonic E F on the other, all is made smooth and continuous. The whole of this mediatorial intervention on the part of the tonic is under the wondrous law of assimilation, which is the law of laws all through creation; but when the tonic chord has fulfilled this graceful action, it immediately drops the assumed note, and closes the cadence in its own simple form.1 [Scientific Basis and Build of Music, page 71]
The varied effect of position in chords. When a chord stands as C E G C, having its root also at the top, it has its softest, dullest, most united effect; it is undramatic, with little contrast. When it stands as E G C E, having its third at the top and bottom, it has a more ticklish, interesting, far-away effect. In reveries composers often finish thus, as if it had vanished - an unsettled effect. When it stands as G C E G, with its top at top and bottom, it has its most dominant character - loud, swelling. In the position C E G C it stands mixingly with the subdominant C E f G a C, and in this its first position its unseen filling in is chiefly from the region of gravity; hence its soft, grave, dull, heavy effect; and it passes very easily to the subdominant chord. When it stands as G C E G it stands mixingly with the dominant G b C d E G, and has its third position and most brilliant effect and uprising, for its unseen filling in is then chiefly from the region of levity; and it passes easily to the dominant chord. When in its second position, its middle position E G C E, its unseen filling in is mixingly both subdominant and dominant, E f G a b C d E; it has then its most interesting and puzzling effect; on the one hand its softest, dullest, and one-est, on the other hand its most brilliant effect, as if it would at once both sink and soar. [Scientific Basis and Build of Music, page 72]
The root of the subdominant is F, in the key of C major; and the top of the dominant is D. The difference between these two notes at the top and bottom of the chord-scale, is the quantity which two octaves is more than three fifths; it is the ratio of 27 to 30, a comma less than the minor third whose ratio is 5 to 6. [Scientific Basis and Build of Music, page 76]
At the first, in the laws of quantities and motions adjusting musical vibrations, there is one chord of the three notes, F, A, C, the root, middle, and top of the five notes which compose the true natural scale; this one chord can be reproduced a fifth higher, C, E, G, in the same mathematical form, taking the top of the first for the root of the second chord. In like manner this second can be reproduced another fifth higher, G, B, D, still in the same mathematical form, and so fit to be a member of the chord-scale of a key. But the law does not admit of another reproduction without interfering with the first chord, so that a fourth fifth produces no new effect; but the whole key is simply a fifth higher, i.e., if the fourth fifth has been properly produced by multiplying the top of the third fifth by 3 and by 5, the generating primes in music. That this carries us into a new scale is seen in that the F is no longer the F? but F#, and the A is no longer A? but A,. But if we suppose the fourth fifth to be simply the old notes with their own vibration numbers, then D, F, A would not be a fifth belonging either to the major or the minor mode, but a fifth a comma less. The letters of it would read like the minor subdominant, D, F, A; but the intervals, as found in the upward development of the major genesis, instead of being, when expressed in commas, 9, 5, 8, 9, which is the minor subdominant, would be 8, 5, 9, 8, which is not a fifth of the musical system; these having always, whether major or minor, two 9's, one [Scientific Basis and Build of Music, page 77]
Having found the framework of the major scale by multiplying F1 three times by 3, find the framework of the minor by dividing three times by 3. But what shall we divide? Well, F1 is the unbegotten of the 25 notes of the great genetic scale; B45 is the last-born of the same scale. We multiply upward from F1 for the major; divide downward from B45 for the minor. Again, B45 is the middle of the top chord of the major system, a minor third below D, the top of that chord, and the top of the whole major chord-scale, so B is the relative minor to it. Now since the minor is to be seen as the INVERSE of the major, the whole process must be inverse. Divide instead of multiply! Divide from the top chord instead of multiply from the bottom chord. Divide from the top of the minor dominant instead of multiply from the root of the major subdominant. This will give the framework of the minor system, B45/3 = E15/3 = A5/3 = D1 2/3. But as 1 2/3 is not easily compared with D27 of the major, take a higher octave of B and divide from it. Two times B45 is B90, and two times B90 is B180, and two times B180 is B360, the number of the degrees of a circle, and two times B360 is B720; all these are simply octaves of B, and do not in the least alter the character of that note; now B720/3 is = E240/3 = A80/3 = D26 2/3. And now comparing D27 found from F1, and D26 2/3 found from B720, we see that while E240 is the same both ways, and also A80, yet D26 2/3 is a comma lower than D27. This is the note which is the center of the dual system, and it is itself a dual note befittingly. [Scientific Basis and Build of Music, page 81]
Make middles in the bass as much as possible. Roots and middles, and middles and tops, do well in arrangements; for example, F and A. [Scientific Basis and Build of Music, page 85]
- and it is balanced between the two forces. If the effects of notes or chords depended solely on their ratios, then the effect of the subdominant, tonic, and dominant would have been alike, for these chords have exactly the same ratios. The centrifugal force of the notes of the dominant chord would take if away from the tonic chord; but Nature, in her skill to build and mix, has in the octave scale placed the middle of the dominant B under the root of the tonic C, and the top of the dominant D under the middle of the tonic E; so that these two rising notes are inevitably resolved into the tonic chord. The gravitating tendencies of the notes of the subdominant would take it also away from the tonic; but in the octave scale Nature has placed the middle of the subdominant A above the top of the tonic G, and the root of the subdominant F above the middle of the tonic E; so that these two falling notes also are inevitably resolved into the tonic chord. In this way two notes resolve to the center of the tonic, D upwards and F downwards; one to the top, A to G, and one to the root, B to C. Nature has thus placed the notes which have upward tendencies under the notes having downward tendencies; she has also related them by proximity, the distance from the one to the other being always either a semitone or the small tone of the ratio 9:10. [Scientific Basis and Build of Music, page 95]
In the first six chords of the scale the tonic is the first of each two. The tonic chord alternating with the other two produces an order of twos, as - tonic dominant, tonic subdominant, tonic subdominant. The first three notes of the octave scale are derived from the root, the top, and the middle of the tonic dominant and tonic; the second three are derived from the root, top, and middle of the subdominant, tonic, and subdominant. The roots, tops, and middles of the chords occurring as they do produce an order of threes, as - root, top, middle; root, top, middle. The first, third, fifth, and eighth of the scale are from the tonic chord; the second and seventh from the dominant; and the fourth and sixth from the subdominant. In the first two chords of the scale the tonic precedes the dominant; in the second two, the subdominant; and in the third two the tonic again precedes the subdominant; and as the top of the subdominant chord is the root of the tonic, and the top of the tonic the root of the dominant, this links these chords together by their roots and tops. The second chord has the top of the first, the third has the root of the second, the fourth has the root of the third, the fifth has the top of the fourth, and the sixth has the root of the fifth; and in this way these successive chords are woven together. The only place of the octave scale where there are two middles of chords beside each other is at the sixth and seventh. The seventh note of the octave scale is the middle of the dominant, and the sixth is the middle of the subdominant. These two chords, though both united to the tonic, which stands between them, are not united to each other by having a note in common, inasmuch as they stand at the extremities of the system; and since they must be enabled to succeed each other in musical progression, Nature has a beautiful way of giving them a note in common by which to do so - adding the root of the subdominant to the top of the dominant, or the top of the dominant to the root of the subdominant, and this gives natural origin to compound chords. The tonic chord, being the center one of the three chords, is connected with the other two, and may follow the dominant and sub-[Scientific Basis and Build of Music, page 97]
notes attracted by proximity are attracted in the direction of the center of the tonic chord, major or minor. But if D in the major is attracted by C, the root of the tonic, then it would be moving away from the center. Two notes which have the ratio of 8:9, as C and D, or two notes which are produced by the same ratio as C and D, or two notes where each of them is either a root or a top, as C and D, never resolve to each other by proximity. It is an invariable order that one of the notes should be the middle of a chord. [Scientific Basis and Build of Music, page 99]
Whenever a sharp comes in in making a new key - that is, the last sharp necessary to make the new key - the middle of the chord in major keys with sharps is raised by the sharp, and the top of the same chord by a comma. Thus when pausing from the key of C to the key of G, when F is made sharp A is raised a comma. When C is made sharp in the key of D, then E is raised a comma, and you can use the first open string. When G is made sharp for the key of A, then B is raised a comma. When D is made sharp for the key of E, then F# is raised a comma; so that in the key of G you can use all the open strings except the first - that is, E. In the key of D you can use all the open strings. In the key of A you can use the first, second, and third strings open, but not the fourth, as G is sharp. In the key of E you can use the first and second open. [Scientific Basis and Build of Music, page 100]
The intervening chord between the Diatonic and Chromatic systems, B, D, F. - This chord, which has suffered expatriation from the society of perfect chords, is nevertheless as perfect in its own place and way as any. From its peculiar relation to both major and minor, and to both diatonic and chromatic things, it is a specially interesting triad. F, which is the genetic root of all, and distinctively the root of major subdominant, has here come to the top by the prime 2. D, here in the middle, is diatonically the top of the major dominant, and the root of the minor subdominant; and on account of its self-duality, the most interesting note of all; begotten in the great genesis by the prime 3. B, the last-begotten in the diatonic genesis, top of the diatonic minor, middle of the dominant major, and begotten by the prime 5, is here the quasi root of this triad, which in view of all this is a remarkable summation of things. This B, D, F is the mors janua vitae in music, for it is in a manner the death of diatonic chords, being neither a perfect major nor a perfect minor chord; yet it is the birth and life of the chromatic phase of music. In attracting and assimilating to itself the elements by which it becomes a full chromatic chord, it gives the minor dominant the G# which we so often see in use, and never see explained; and it gives the major subdominant a corresponding A?, less frequently used. It is quite clear that this chromatic chord in either its major phase as B, D, F, A?, or its minor phase as G#, B, D, F, is as natural and legitimate in music as anything else; and like the diatonic chords, major and minor, it is one of three, exactly like itself, into which the octave of semitones is perfectly divided. [Scientific Basis and Build of Music, page 101]
together on radial lines from the center they appear grouped in various chords and combinations, dropping out and coming in in such succession as to constitute what Ramsay, whose genius was given to set this thus before us, calls "Nature's Grand Fugue." Beginning at F in the center at the top, and moving either to the right or to the left, after a run of 7 notes we have 4 consecutive Octaves, and then comes the Minor fifth, A-E, followed by the Major fifth, G-D; and this by another Major fifth, F-C; the combinations keep changing till at the quarter of the circle we come to F, A, C, E, G, a combination of the subdominant and tonic Major; and after another varied series of combinations we have at the half of the circle the elements of 2 minor chords, D, F, A and A, C, E, and one Major chord, C, E, G; at the third quarter we have a repetition of the first quarter group; and the various chords and combinations dropping out and coming in, fugue-like; finally we return to where we began, and end with the three-times-three chord, in which the whole 25 notes are struck together, and make that wondrous and restful close of this strange Fugue. No one can hear the thrice-threefold chord of this close and ever forget it; it is "the lost chord" found; and leads the saintly heart away to the Three in One who is the Lord of Hosts; Maker of Heaven and Earth, and all the host of them. [Scientific Basis and Build of Music, page 103]
In Fig. 1, the mathematical framework of the scales major and minor, is shown the genesis of the scale. F1, in the top figure, is multiplied by 3, and that by 3, and that by 3, which brings us to D27, top of the major dominant. F1 is the root of the whole system. C3 is the top of the first chord, and from that grows the next, and from that the next; and so we have F, C, G, and D, the tops and roots of the major system of chords. When these 3 roots are each multiplied once by 5, the middles of the chords are found, as shown - A, E, and B; so B is the last-born of the major family. When B is taken 4 octaves higher at the number 720 and divided by 3, and that by 3, and that by 3, we get the notes E, A, and D, which are the roots and tops of the minor system of chords. Dividing B, E, and A each by 5 once, we get the middles of the 3 minor chords, as shown. [Scientific Basis and Build of Music, page 103]
In the major system, when the tonic chord follows the subdominant one, there is one semitonic progression to the middle of the tonic, and one note in common with the root, so these two chords are linked together in different ways. When the tonic chord follows the dominant one, there is one semitonic progression to the root of the tonic, and one note in common with its top, so these two chords also are linked together in two different ways. When the tonic chord follows the compound dominant, i.e., the dominant seventh, there are two semitonic progressions, one to the middle and one to the root, and one note in common with its top, so these two are linked together in the same two ways; but the semitonic progression being double gives this resolution great urgency. And now we come to the two chords, the subdominant and dominant, which have no note in common, and must, when they succeed each other, be helped to come together. Nature teaches us how this is to be done by a process of borrowing and lending which will establish between them a similar relationship to that which keeps the continuity of the other chords in succession. We have seen that the top of the subdominant and the root of the tonic are a note in common to these chords, and so the top of the tonic and the root of the dominant also are a note possessed in common by these two chords. In like manner in this disjunct part, when the dominant follows the subdominant, the root of the subdominant is lent to the top of the dominant, and thus they come to have a note in common. The top of the [Scientific Basis and Build of Music, page 111]
With perfect duality of response does resolution of chords go on in the minors. When the tonic chord follows the subdominant one, they have for their note in common A, i.e., in the key of A; and the middle of the subdominant moves by semitonic progression to the top of the tonic. When the tonic chord follows the dominant one, the top of the tonic and the root of dominant E is a note in common, and the top of the dominant goes by semitonic progression to the middle of the tonic. These simple chords are thus linked together exactly with the same degree of continuity as the simple chords of the major. When the tonic chord follows the compound subdominant, this compound chord, like the compound dominant in the major, has two semitonic progressions - one to the top and one to the middle of the tonic - and they have one note in common. When the compound dominant follows the subdominant, the root of the subdominant is lent to the top of the dominant, and thus a note in common is created, and the middle of the subdominant moves by semitonic progression to the root of the dominant. When the compound subdominant follows the dominant, the top is lent to the root of the subdominant, creating a note in common between them, and the root of the dominant goes to the middle of the subdominant in semitonic progression. This is the way of Nature. The unbroken continuity of her ways is perfectly illustrated in the linked sweetness and kinship of chords in a key; or when one key passes by modulation to another key; and that through all the chords and all the keys. We shall see wondrously more of this when we come to the study and contemplation of the Chromatic System of Chords. [Scientific Basis and Build of Music, page 112]
These two plates show the chromatic chord resolving into the twelve major and twelve minor tonic chords of the twenty-four scales. There seems to be twenty-five, but that arises from making G? and F# in the major two scales, whereas they are really only one; and the same in the minor series, E? and D# are really one scale. C in the major and A in the minor, which occur in the middle of the series, when both sharps and flats are employed in the signatures, are placed below and outside of the circular stave to give them prominence as the types of the scale; and the first chromatic chord is seen with them in its major and minor form, and its typical manner of resolving - the major form rising to the root, and falling to the top and middle; the minor form falling to the top, and rising to the root and middle. The signatures of the keys are given under the stave. [Scientific Basis and Build of Music, page 116]
Fig. 3 illustrates the way Nature teaches us by example how to compound so as to enable chords that are separated by the intervention of others to pass to each other. In the middle of the chord scale Nature gives the root of the one chord to the top of the other, and the top of the one to the root of the other; in compounding we are taught by this example to do the same, and the top of the separated dominant is given to the root of the [Scientific Basis and Build of Music, page 120]
See Also
bottom
dominant
middle
subdominant
tonic
top of the ascending genesis
top of the dominant
top of the dominant major
top of the dominant minor
top of the first is the root of the second
top of the major dominant
top of the minor dominant B
top of the second is the root of the third
top of the tonic E