Loading...
 

musical vibration

Ramsay
Different writers have put forth different views of what constitute a musical vibration, but their various views do not make any difference in the ratios which the notes of this sound-host bear to each other. Whether the vibrations be counted as single or double vibrations, the ratios of their relative motions are the same. Nevertheless, a musical vibration is an interesting thing in itself, and ought to be correctly defined.
A string when vibrating musically is passing and re-passing the central line of its rest or equilibrium with a certain range of excursion. Some writers have defined a vibration to be the passage of the string from one extreme of its excursion to the other, while some have preferred to define it as the passage of the string from the one extreme of its excursion to the other and back again. D. C. Ramsay has been led in his researches to define a vibration as the movement of the string from its central line of rest to the extreme of its excursion on one side, and back to the central line of rest; and from the central line of rest to the extreme of its excursion on the other side, and back again to the "right line," as he calls it, as a second vibration. His reasoning on this will be seen in what follows. (See Fig. 3, Plate IV.) [Scientific Basis and Build of Music, page 21]

The usual way of Reckoning a Vibration

CHAPTER II
DEFINITION OF A MUSICAL VIBRATION


Musical sounds are usually caused in the ear by certain vibrations of the surrounding air, which originate from solid bodies in a state of vibration from some force exerted upon them. Vibrations of the air require to attain a certain rate of speed before they become audible to the human ear; and they require to have certain ratios of rate of rapidity in order to constitute that beautiful host of sounds which constitutes the music of mankind. These musical vibrations may arise in the air from a vibrating organ pipe, or a vibrating tuning fork, or a bell, or a sounding glass, or a strand of wire or gut-string, or other rhythmically vibrating body; but to explain and define the nature of a musical vibration from the action upon it of an elastic string is to explain and define it for all. But before defining what a vibration of a string is, let us hear what others have said about it. Charles Child Spencer, Treatise on Music, p. 6, says- "It is customary in calculating the ratios of vibration of musical strings, and which answer to the waves of the atmosphere, to reckon by double vibrations, so that instead of saying there are 32 single vibrations in the lowest sound, C, writers on this branch of music say there are 16 double vibrations in this sound. This method of calculation, therefore, gives 256 vibrations for the fourth Octave C." Playfair, in his Outlines of Natural Philosophy, p. 282, says- "It is usual to reckon the vibrations of a string different from those of a pendulum; the passage from the highest point on one side to the highest point on the other is reckoned a vibration of a pendulum; the passage from the farthest distance on one side to the farthest distance on the other and back again to its first position, is the accounted a vibration of a musical string. It is properly a double vibration." Holden, in his Rational System of Music, says- "Mr. Emerson reckons the complete vibration the time in which a sounding string moves from one side to [Scientific Basis and Build of Music, page 22]

At the first, in the laws of quantities and motions adjusting musical vibrations, there is one chord of the three notes, F, A, C, the root, middle, and top of the five notes which compose the true natural scale; this one chord can be reproduced a fifth higher, C, E, G, in the same mathematical form, taking the top of the first for the root of the second chord. In like manner this second can be reproduced another fifth higher, G, B, D, still in the same mathematical form, and so fit to be a member of the chord-scale of a key. But the law does not admit of another reproduction without interfering with the first chord, so that a fourth fifth produces no new effect; but the whole key is simply a fifth higher, i.e., if the fourth fifth has been properly produced by multiplying the top of the third fifth by 3 and by 5, the generating primes in music. That this carries us into a new scale is seen in that the F is no longer the F? but F#, and the A is no longer A? but A,. But if we suppose the fourth fifth to be simply the old notes with their own vibration numbers, then D, F, A would not be a fifth belonging either to the major or the minor mode, but a fifth a comma less. The letters of it would read like the minor subdominant, D, F, A; but the intervals, as found in the upward development of the major genesis, instead of being, when expressed in commas, 9, 5, 8, 9, which is the minor subdominant, would be 8, 5, 9, 8, which is not a fifth of the musical system; these having always, whether major or minor, two 9's, one [Scientific Basis and Build of Music, page 77]

musical vibrations in both acute and grave harmonics, generate a concentration of mighty action, an ever-outgoing of Nature's own power, so that she, by her own laws of vibratory motion, can reproduce and perpetually maintain outgoing power of action; and, again, play in perfect harmony her grand fugue with these tremendous all-resolving forces in that high and hidden and silent region in which Mr. Keely is experimenting. [Scientific Basis and Build of Music, page 87]

Six Octaves required for the Birth of the Scale

EXPLANATION OF PLATES.
[BY THE EDITOR.]


THIS plate is a Pendulum illustration of the System of musical vibrations. The circular lines represent Octaves in music. The thick are the octave lines of the fundamental note; and the thin lines between them are lines of the other six notes of the octave. The notes are all on lines only, not lines and spaces. The black dots arranged in these lines are not notes, but pendulum oscillations, which have the same ratios in their slow way as the vibrations of sounding instruments in the much quicker region where they exist. The center circle is the Root of the System; it represents F1, the root of the subdominant chord; the second thick line is F2, its octave; and all the thick lines are the rising octaves of F, namely 4, 8, 16, 32, and 64. In the second octave on the fifth line are dots for the three oscillations which represent the note C3, the Fifth to F2, standing in the ratio of 3 to 2; and the corresponding lines in the four succeeding Octaves are the Octaves of C3, namely 6, 12, 24, and 48. On the third line in the third Octave are 5 dots, which are the 5 oscillations of a pendulum tuned to swing 5 to 4 of the F close below; and it represents A5, which is the Third of F4 among musical vibrations. On the first line in the fourth Octave are 9 dots. These again represent G9, which stands related to C3 as C3 stands to F1. On the seventh line of the same octave are 15 dots; these represent the vibrations of E15, which stands related to C3 as A5 stands to F1. On the sixth line of the fifth Octave are 27 dots, representing D27, which stands related to G9 as G9 stands to C3, and C3 also to F1; it is the Fifth to G. And last of all, on the fourth line of the sixth Octave are 45 dots, representing B45, which, lastly, stands related to G9 as E15 stands to C3, and A5 to F1; it is the Third to this third chord - G, B, D. The notes which arise in each octave coming outward from the center are repeated in a double number of dots in the following Octaves; A5 appears as 10, 20, and 40; G9 appears as 18 and 36; E15 appears as 30 and 60; D27 appears as 54; and last of all B45 only appears this once. This we have represented by pendulum oscillations, which we can follow with the eye, the three chords of the musical system, F, A, C; C, E, G; and G, B, D. C3 is from F1 multiplied by 3; G9 is from C3 multiplied by 3; these are the three Roots of the three Chords. Their Middles, that is their Thirds, are similarly developed; A is from F1 multiplied by 5; E15 is from C3 multiplied by 5; B45 is from G9 multiplied by 5. The primes 3 and 5 beget all the new notes, the Fifths and the Thirds; and the prime 2 repeats them all in Octaves to any extent. [Scientific Basis and Build of Music, page 102]

are always when they have returned to the side from which they were started. The Pendulographer, also, when writing the beautiful pictures which the musical ratios make when a pen is placed under the control of the pendulums, always finds his figure to begin again when the pendulums have finished their period, and have come for a fresh start to the side from which the period began. This confirms our author's definition of an oscillation of a pendulum. Fig. 3 is an illustration of the correct definition of a Musical Vibration, as also given in this work. Although the definition of an oscillation is not identical with that of a vibration, yet on account of their movement in the same ratios the one can be employed in illustration of the other as we have here done. Fig. 4 is a uniform rod suspended from the end as a pendulum; it will oscillate, of course, at a certain speed according to its length. In such a pendulum there are three centers related in an interesting way to the subject of Music in its three chords - subdominant, tonic, and dominant, which roots are F, C, and G. The center of gravity in the middle of the rod at 2, suspended at which the rod has no motion, corresponds to F, the root of the subdominant, in which there is the maximum of musical gravity. The center of oscillation at 3, which is one-third of the length of the rod from the end, is like the root of the tonic whose number is 3 in the genesis of the scale from F1. In this point of suspension the oscillations are the same as when suspended from the end at 1. The point at 9 is at a ninth from the center of oscillation. Our author discovered that, if suspended at this point, the pendulum had its highest rate of speed. Approaching the end, or approaching the center of oscillation from this point, the rate of speed decreases. Exactly at one-ninth from the center of oscillation, or two-ninths from the end, is this center of velocity, as Ramsay designated it; and it corresponds in some sort also to the root of the dominant G, which is 9 in the genesis of the scale from F1; its rate of vibration is nine times that of F1. The dominant chord is the one in which is the maximum of levity and motion in music. [Scientific Basis and Build of Music, page 105]

See Also


melodic
musical ratio
noise
periodic
Fig. 3, Plate IV.

Created by Dale Pond. Last Modification: Tuesday December 22, 2020 03:17:17 MST by Dale Pond.