Ramsay
"Moreover, he begins his calculations from F, the root of the Subdominant, instead of C, the root of the Tonic, which is the usual way." [Scientific Basis and Build of Music, page 8]
In the progression - that is, the going on from one to another - of these triplets in harmonizing the octave scale ascending, Nature goes on normally till we come to the passage from the sixth to the seventh note of the scale, whose two chords have no note in common, and a new step has to be taken to link them together. And here the true way is to follow the method of Nature in the birthplace of chords.1 The root of the subdominant chord, to which the sixth of the octave scale belongs, which then becomes a 4-note chord, and is called the dominant seventh; F, the root of the subdominant F, A, C, is added to G, B, D, the notes of the dominant, which then becomes G, B, D, F; the two chords have now a note in common, and can pass on to the end of the octave scale normally. In going down the octave scale with harmony, the passage from the seventh to the sixth, where this break exists, meets us at the very second step; but following Nature's method again, the top of the dominant goes over to the root of the subdominant, and F, A, C, which has no note in common with G, B, D, becomes D, F, A, C, and is called the subdominant sixth; and continuity being thus established, the harmony then passes on normally to the bottom of the scale, every successive chord being linked to the preceding note by a note in common. [Scientific Basis and Build of Music, page 49]
The various raisings and lowerings of notes in advancing keys, major and minor. - In each fifth of the majors ascending the top of the dominant is raised a comma. A40 in the key of C becomes A40 1/2 in the key of G; E60 in the scale of G is E60 3/4 in the scale of D; B90 in the scale of D is B91 1/8 in the scale of A. This alteration of the top of the dominant major goes on through all the twelve scales. Similarly, by the Law of Duality, each fifth in the minors descending has the root of the subdominant lowered a comma. D54 in the key of E minor is D53 1/2 in the key of A; G72 in the scale of A is G71 1/9 in the scale of D; C48 in the scale of D is C47 11/27 in the scale of G. This alteration of the root of the subdominant goes on through all the twelve minor scales. [Scientific Basis and Build of Music, page 62]
common, to mingle with more chord-society. So those added thirds which constitute compound chords are like accomplishments acquired for this end, and they make such chords exceedingly interesting. The dominant assumes the root of the subdominant, and so becomes the dominant seventh that it may be affiliated with the subdominant chords. Inversely, the subdominant assumes the top of the dominant chord that it may be affiliated with the dominant. The major tonic may exceptionally be compounded with the top of the minor subdominant when it comes between that chord and its own dominant; and the minor tonic may in the same way assume the root of the major dominant when it comes between that chord and its subdominant. The minor subdominant D F A, and the major dominant G B D, are too great strangers to affiliate without some chord to introduce them; they seem to have one note in common, indeed, but we know that even these two D's are a comma apart, although one piano-key plays them both, and the F G and the A B are as foreign to each other as two seconds can be, each pair being 9 commas apart, and G A are 8 commas apart. In this case, as a matter of musical courtesy, the tonic chord comes in between; and when it is the minor subdominant that is to be introduced, the major tonic assumes the top of that chord, and then turns to its own major dominant and suavely gives the two to enter into fellowship; for the tonic received the minor subdominant through its semitonic E F, and carries it to the major dominant through its semitonic B C, along with C in common on the one side and G in common on the other. When it is the major dominant that is to be introduced to the minor subdominant the minor tonic fulfills the function, only the details are all reversed; it assumes the root of dominant, and by this note in common, and its A in common with its own subdominant, along with the semitonic second B C on the one hand and the semitonic E F on the other, all is made smooth and continuous. The whole of this mediatorial intervention on the part of the tonic is under the wondrous law of assimilation, which is the law of laws all through creation; but when the tonic chord has fulfilled this graceful action, it immediately drops the assumed note, and closes the cadence in its own simple form.1 [Scientific Basis and Build of Music, page 71]
The root of the subdominant is F, in the key of C major; and the top of the dominant is D. The difference between these two notes at the top and bottom of the chord-scale, is the quantity which two octaves is more than three fifths; it is the ratio of 27 to 30, a comma less than the minor third whose ratio is 5 to 6. [Scientific Basis and Build of Music, page 76]
The interval F G A, which in the scale of A was a 9-8-comma interval, must take the place of C D E of the scale of A, which is an 8-9-comma interval; and in order to do this, G has been mathematically lowered a comma. As the middle of the dominant in the major is raised a comma, so the root of the subdominant is lowered a comma. The interval A B C, which in the scale of A was a 9-5-comma interval, is here to take the place of E F G in the scale of A, which is a 5-9-comma interval; and in order to do so, B is lowered 4 commas, and so becomes ?B; and this mathematical process makes the new scale exactly like the old one. This is the way of the minors when calculated as a descending series of scales, which is their natural way. [Scientific Basis and Build of Music, page 84]
There are 32 notes required for each octave for the 13 major and the 13 minor mathematical scales. These 32 notes are by the law of duality arranged symmetrically from D as a center upwards to G#, and downwards to A?. D itself serves for 2 of the 32 on the piano. The first black keys on each side of D serve for nominally 3 notes each = 6. The first white key above and the first below D serve for 2 notes each = 4. The second white key above and the second below serve each for 3 notes = 6. The second black keys above and below D serve each for 3 notes = 6. The third black key above D is G#, the third below is A?; this key, for it is one, serves for 2 of the 32. There is a comma of difference between D minor and D major. Six fifths below the minor D26 2/3 is A?, the root of the subdominant of the key of E? minor; and six fifths above the major D27 is G#, the top of the dominant of F# major. The difference between this minor A? and this major G# is two commas and [Scientific Basis and Build of Music, page 85]
- and it is balanced between the two forces. If the effects of notes or chords depended solely on their ratios, then the effect of the subdominant, tonic, and dominant would have been alike, for these chords have exactly the same ratios. The centrifugal force of the notes of the dominant chord would take if away from the tonic chord; but Nature, in her skill to build and mix, has in the octave scale placed the middle of the dominant B under the root of the tonic C, and the top of the dominant D under the middle of the tonic E; so that these two rising notes are inevitably resolved into the tonic chord. The gravitating tendencies of the notes of the subdominant would take it also away from the tonic; but in the octave scale Nature has placed the middle of the subdominant A above the top of the tonic G, and the root of the subdominant F above the middle of the tonic E; so that these two falling notes also are inevitably resolved into the tonic chord. In this way two notes resolve to the center of the tonic, D upwards and F downwards; one to the top, A to G, and one to the root, B to C. Nature has thus placed the notes which have upward tendencies under the notes having downward tendencies; she has also related them by proximity, the distance from the one to the other being always either a semitone or the small tone of the ratio 9:10. [Scientific Basis and Build of Music, page 95]
top of the dominant; the third is the middle of the tonic; the fourth is the root of the subdominant; the fifth is the top of the tonic; the sixth is the middle of the subdominant; the seventh is the middle of the dominant; and the eighth, like the first, is the root of the tonic. [Scientific Basis and Build of Music, page 97]
dominant; and either of these chords may also follow the tonic; but when the dominant follows the subdominant, as they have no note in common, the root of the subdominant is added to the dominant chord, and this forms the dominant seventh; and when the subdominant follows the dominant, the top of the dominant is added to the subdominant, and this forms the subdominant sixth. The sixth and seventh of the octave scale is the only place these two compound chords are positively required; but from their modifying and resolvable character they are very generally used. When the dominant is compounded by having the root of the subdominant, its specific effect is considerably lower; and when the subdominant is compounded by having the top of the dominant, its specific effect is considerably higher. In the octave scale the notes of the subdominant and dominant chords are placed round the notes of the tonic chord in such a way was to give the greatest amount of contrast between their notes and the tonic notes. In the tonic chord the note which has the greatest amount of specific gravity is its root; and in the octave scale it has below it the middle and above it the top of the dominant, the two notes which have the greatest amount of specific levity; and in the octave scale it has above it the middle and below it the root of the subdominant - the two notes which the greatest amount of specific gravity. The third note of the scale, the middle of the tonic chord, is the center of the system, and is the note which has the least tendency either upwards or downwards, and it has above it the root of the subdominant, the note which has the greatest amount of specific gravity, and it has below it the top of the dominant, the note which has the greatest amount of specific levity. Thus the root of the subdominant is placed above, and the top of the dominant below, the center of the system; the specific gravity of the one above and the specific levity of the one below cause them to move in the direction of the center. [Scientific Basis and Build of Music, page 98]
are always when they have returned to the side from which they were started. The Pendulographer, also, when writing the beautiful pictures which the musical ratios make when a pen is placed under the control of the pendulums, always finds his figure to begin again when the pendulums have finished their period, and have come for a fresh start to the side from which the period began. This confirms our author's definition of an oscillation of a pendulum. Fig. 3 is an illustration of the correct definition of a Musical Vibration, as also given in this work. Although the definition of an oscillation is not identical with that of a vibration, yet on account of their movement in the same ratios the one can be employed in illustration of the other as we have here done. Fig. 4 is a uniform rod suspended from the end as a pendulum; it will oscillate, of course, at a certain speed according to its length. In such a pendulum there are three centers related in an interesting way to the subject of Music in its three chords - subdominant, tonic, and dominant, which roots are F, C, and G. The center of gravity in the middle of the rod at 2, suspended at which the rod has no motion, corresponds to F, the root of the subdominant, in which there is the maximum of musical gravity. The center of oscillation at 3, which is one-third of the length of the rod from the end, is like the root of the tonic whose number is 3 in the genesis of the scale from F1. In this point of suspension the oscillations are the same as when suspended from the end at 1. The point at 9 is at a ninth from the center of oscillation. Our author discovered that, if suspended at this point, the pendulum had its highest rate of speed. Approaching the end, or approaching the center of oscillation from this point, the rate of speed decreases. Exactly at one-ninth from the center of oscillation, or two-ninths from the end, is this center of velocity, as Ramsay designated it; and it corresponds in some sort also to the root of the dominant G, which is 9 in the genesis of the scale from F1; its rate of vibration is nine times that of F1. The dominant chord is the one in which is the maximum of levity and motion in music. [Scientific Basis and Build of Music, page 105]
In the major system, when the tonic chord follows the subdominant one, there is one semitonic progression to the middle of the tonic, and one note in common with the root, so these two chords are linked together in different ways. When the tonic chord follows the dominant one, there is one semitonic progression to the root of the tonic, and one note in common with its top, so these two chords also are linked together in two different ways. When the tonic chord follows the compound dominant, i.e., the dominant seventh, there are two semitonic progressions, one to the middle and one to the root, and one note in common with its top, so these two are linked together in the same two ways; but the semitonic progression being double gives this resolution great urgency. And now we come to the two chords, the subdominant and dominant, which have no note in common, and must, when they succeed each other, be helped to come together. Nature teaches us how this is to be done by a process of borrowing and lending which will establish between them a similar relationship to that which keeps the continuity of the other chords in succession. We have seen that the top of the subdominant and the root of the tonic are a note in common to these chords, and so the top of the tonic and the root of the dominant also are a note possessed in common by these two chords. In like manner in this disjunct part, when the dominant follows the subdominant, the root of the subdominant is lent to the top of the dominant, and thus they come to have a note in common. The top of the [Scientific Basis and Build of Music, page 111]
subdominant also moves by semitonic progression to the middle of the dominant, and so, like the simple chords, they are brought into continuity. When the subdominant follows the dominant, the top of the dominant is lent to the root of the subdominant, and they come to have also a note in common; and the middle of the dominant moves by semitonic progression to the top of the subdominant; and thus resolving continuity is established between them. [Scientific Basis and Build of Music, page 112]
With perfect duality of response does resolution of chords go on in the minors. When the tonic chord follows the subdominant one, they have for their note in common A, i.e., in the key of A; and the middle of the subdominant moves by semitonic progression to the top of the tonic. When the tonic chord follows the dominant one, the top of the tonic and the root of dominant E is a note in common, and the top of the dominant goes by semitonic progression to the middle of the tonic. These simple chords are thus linked together exactly with the same degree of continuity as the simple chords of the major. When the tonic chord follows the compound subdominant, this compound chord, like the compound dominant in the major, has two semitonic progressions - one to the top and one to the middle of the tonic - and they have one note in common. When the compound dominant follows the subdominant, the root of the subdominant is lent to the top of the dominant, and thus a note in common is created, and the middle of the subdominant moves by semitonic progression to the root of the dominant. When the compound subdominant follows the dominant, the top is lent to the root of the subdominant, creating a note in common between them, and the root of the dominant goes to the middle of the subdominant in semitonic progression. This is the way of Nature. The unbroken continuity of her ways is perfectly illustrated in the linked sweetness and kinship of chords in a key; or when one key passes by modulation to another key; and that through all the chords and all the keys. We shall see wondrously more of this when we come to the study and contemplation of the Chromatic System of Chords. [Scientific Basis and Build of Music, page 112]
In Fig. 1 is shown the way in which duality arranges the new sharp in the majors to the middle of the dominant, and the new flat to the middle of the subdominant in the minors, all through the six scales done in flats and sharps. The flat goes to the root of the subdominant and the sharp to the top of the dominant in the other six, as in Fig. 2. This is the invariable way that the new sharps and flats are responsively added all through the system. [Scientific Basis and Build of Music, page 120]
distant subdominant, and the root of the separated subdominant is given to the top of the distant dominant. Here also duality holds sway. [Scientific Basis and Build of Music, page 121]
See Also
middle
middle of the subdominant
Root
Subdominant
Tonic
top of the subdominant