Ramsay
"There are three chromatic chords, and each of these three is related to eight particular tonic chords. When one the these chromatic chords goes to any one of its eight tonic chords, three of its notes move in semitonic progression, and the other note moves by the small tone, the ratio of 9:10. There is exception to this rule, whether the key be major or minor. But when the chromatic chord which should resolve to the tonic of C is followed by the subdominant, or the tonic of F (the example in Mr. Green's book), only two of its notes move in semitonic progress. Your friend describes the chord as if it had gone to the tonic of B; and what he said about it, and about D going to C, is what is supposed to be [Scientific Basis and Build of Music, page 94]
- and it is balanced between the two forces. If the effects of notes or chords depended solely on their ratios, then the effect of the subdominant, tonic, and dominant would have been alike, for these chords have exactly the same ratios. The centrifugal force of the notes of the dominant chord would take if away from the tonic chord; but Nature, in her skill to build and mix, has in the octave scale placed the middle of the dominant B under the root of the tonic C, and the top of the dominant D under the middle of the tonic E; so that these two rising notes are inevitably resolved into the tonic chord. The gravitating tendencies of the notes of the subdominant would take it also away from the tonic; but in the octave scale Nature has placed the middle of the subdominant A above the top of the tonic G, and the root of the subdominant F above the middle of the tonic E; so that these two falling notes also are inevitably resolved into the tonic chord. In this way two notes resolve to the center of the tonic, D upwards and F downwards; one to the top, A to G, and one to the root, B to C. Nature has thus placed the notes which have upward tendencies under the notes having downward tendencies; she has also related them by proximity, the distance from the one to the other being always either a semitone or the small tone of the ratio 9:10. [Scientific Basis and Build of Music, page 95]
"What we have thus said about the resolving notes to the major tonic has been allowed in the case of the minor. No one ever said that the second of the minor scale resolved to the root of the tonic. Notwithstanding the importance of the tonic notes, the semitonic interval above the second of the scale decided the matter for the Law of Proximity; and no one ever said that D, the root of the subdominant minor, did not resolve to C, the center of the tonic minor, on the same terms that two notes are brought to the center of the tonic major; with this difference, that the semitonic interval is above the center in the major and below it in the minor. The other two notes which resolve into the tonic minor are on the same terms as the major; with this difference, that the semitonic interval is below the root of the tonic major and above the top of the tonic minor. And the small tone ratio 9:10 is above the top of the tonic major and below the root of the tonic minor. If it has been the case that D resolved to the root of the tonic major, then, according to the Law of Duality, there would have been another place where everything would have been the same, only in the inverse order; but, fortunately for itself, the error has no other error to keep it in countenance. This error has not been fallen into by reasoning from analogy. [Scientific Basis and Build of Music, page 99]
See Also