**PLATE VI**.

This plate is a representation of the area of a scale; the major scale, when viewed with the large hemisphere, lowest; the minor when viewed the reverse way. It is here pictorially shown that major and minor does not mean larger and smaller, for both modes occupy the same area, and have in their structure the same intervals, though standing in a different order. It is this difference in structural arrangement of the intervals which characterizes the one as masculine and the other as feminine, which are much preferable to the major and minor as distinctive names for the two modes. Each scale, in both its modes, has three Fifths - subdominant, tonic, and dominant. The middle fifth is the tonic, and its lowest note the key-note of the scale, or of any composition written in this scale. The 53 commas of the Octave are variously allotted in its seven notes - 3 of them have 9 commas, 2 have 8, and 2 have 5. The area of the scale, however, has much more than the octave; it is two octaves, all save the minor third D-F, and has 93 commas. This is the area alike of masculine and feminine modes. The two modes are here shown as *directly* related, as we might figuratively say, in their marriage relation. The law of *Duality*, which always emerges when the two modes are seen in their relationship, is here illustrated, and the dual notes are indicated by oblique lines across the pairs. [Scientific Basis and Build of Music, page 106]

The larger hemisphere of the Fifths is uppermost when taking the minor view of the plate, and suggests the idea of the minor being weighed downward, as it really is mathematically in the genesis of the scale, which is seen in the D of the minor being a *comma lower* than the D of the major. Taking the major view of the plate, the smaller hemisphere is uppermost, and suggest the idea of rising upward, as it really does in the[Scientific Basis and Build of Music, page 106]

mathematical genesis, as seen in its D being a *comma higher* than that of the minor. This gravity and buoyancy of the modes is a striking feature of them. In the Thirds it is different from the Fifths; the larger hemisphere of each third seems gravitating toward the center of the tonic chord. The area of the scale has then the aspect of a planet with its north and south poles, and pervaded by a tendency towards the center; the center itself being neutral as to motion. [Scientific Basis and Build of Music, page 107]

It will be observed that this plate represents intervals by its areas, that is, the distances between the notes; and the notes themselves appear as points. But it must be remembered that these distances or intervals represent the vibrations of these notes in the ratios they bear to each other. So it is the vibration-ratios which constitute the intervals here pictorially represented as areas. The area, as space, is nothing; the note itself is everything. [Scientific Basis and Build of Music, page 107]

When Leonhard Euler, the distinguished mathematician of the eighteenth century, wrote his essay on a *New Theory of Music*, Fuss remarks - "It has no great success, as it contained too much geometry for musicians, and too much music for geometers." There was a reason which Fuss was not seemingly able to observe, namely, that while it had hold of some very precious musical truth it also put forth some error, and error is always a hindrance to true progress. Euler did good service, however. In his letters to a German Princess on his theory of music he showed the true use of the mathematical primes 2, 3, and 5, but debarred the use of 7, saying, "Were we to introduce the number 7, the tones of an octave would be increased." It was wise in the great mathematician to hold his hand from adding other notes. It is always dangerous to offer strange fire on the altar. He very clearly set forth that while 2 has an unlimited use in producing *Octaves*, 3 must be limited to its use 3 *times* in producing *Fifths*. This was right, for in producing a fourth Fifth it is not a Fifth for the scale. But Euler erred in attempting to generate the *semitonic scale* of 12 notes by the use of the power of 5 a second time on *the original materials*. It produces F# right enough; for D27 by 5 gives 135, which is the number for F#. D27 is the note by which F# is produced, because D is right for this process in its *unaltered* condition. But when Euler proceeds further to use the prime 5 on the middles, A, E, and B, and F#, in their original and unaltered state, he quite errs, and produces all the sharpened notes *too low*. C# for the key of D is not got by applying 5 to A40, as it is in its birthplace; A40 has already been altered for the key of G by a *comma*, and is A40 1/2 before it is used for producing its third; it is A40 1/2 that, multiplied by 5, gives C#202 1/2, not C200, as Euler makes C#. Things are in the same condition with E before G# is wanted for the key of A. G# is found by 5 applied to E; not E in its original and unaltered state, E30; but as already *raised a comma* for the key of D, E30 3/8; so G# is not 300, as Euler has it, but 303 3/4. Euler next, by the same erroneous methods, proceeds to generate D# from B45, its birthplace number; but before D# is wanted for the key of E, B has been raised a comma, and is no longer B45, but B45 9/16, and this multiplied by 5 gives D#227 13/16, not D225, as Euler gives it. The last semitone which he generates to complete his 12 semitones is B?; that is A#, properly speaking, for this series, and he generates it from F#135; but this already altered note, before A# is wanted for the key of B, has been again raised a comma [Scientific Basis and Build of Music, page 107]

for the key of E, and is no longer F#135, but F#136 11/16; and so A# produced by 5 from F#136 11/16, as Euler has it, but A#683 7/16, A itself having been already raised a comma before it comes to be sharpened. So Euler's chromatic scale of 12 semitones is all wrong except F#, which, by accident, is right.^{1} [Scientific Basis and Build of Music, page 108]