Loading...
 

sine wave

The orthodox view of a wave and wave motion is centered around a sine wave or similar configuration. In general this wave model is a measurement of a quantity and/or polarity of energy, sound pressure or sound power (amplitude), viewed over time, as the wave passes a sensing device such as a microphone. Empirical measurements have been made of pressure or power fluctuations over time and a plotting of these measurements creates the typical sine wave form. There doesn't seem to be much said about the nature of that wave itself or the Positive or negative phase. Of which parameters, SVP sees numerous attributes and dynamics. Orthodoxy does recognize that during the Positive or compression phase the media substance does compress or bunch up then in the negative phase the media disperses or rarefies. Orthodoxy erroneously assumes this periodic gathering together and dispersing of the media substance is due to physical forcing of the particles together or them somehow pulling away from each other during the rarefaction phase. In Figure 8.2 - Compression Wave Phase Illustration are shown both models, a sine wave shown above a compression/rarefaction illustrations with matching phases.

Compression Wave
Compression Wave
Figure 8.2 - Oscillation versus Vibration - Compression Wave Phase Illustration

See Also


3.8 - There are no Waves 3.9 - Nodes Travel Faster Than Waves or Light 8.3 - Conventional View of Wave Motion 8.4 - Wave types and metaphors 8.5 - Wave Motion Observables 8.6 - Wave Form Components 8.8 - Water Wave Model 9.2 - Wave Velocity Propagation Questions 9.30 - Eighteen Attributes of a Wave 9.31 - Oscillatory Motion creating Waveforms 9.34 - Wave Propagation 9.35 - Wave Flow Compression Wave 12.05 - Three Main Parts of a Wave 16.06 - Electric Waves are Sound Waves Compression Wave Velocity Figure 6.10 - Wave Dynamics between Cube Corners Figure 6.9 - Russell depicts his waves in two ways Figure 7.1 - Step 1 - Wave Vortex Crests at Maximum Polarization Figure 8.1 - Russells Painting of Wave Form Dynamics Figure 8.10 - Each Phase of a Wave as Discrete Steps Figure 8.11 - Four Fundamental Phases of a Wave Figure 8.14 - Some Basic Waveforms and their constituent Aliquot Parts Figure 8.2 - Compression Wave Phase Illustration Figure 8.3 - Coiled Spring showing Longitudinal Wave Figure 8.4 - Transverse Wave Figure 9.10 - Phases of a Wave as series of Expansions and Contractions Figure 9.11 - Compression Wave with expanded and contracted Orbits Figure 9.13 - Wave Flow as function of Periodic Attraction and Dispersion Figure 9.14 - Wave Flow and Phase as function of Particle Rotation Figure 9.15 - Wave Flow and Wave Length as function of Particle Oscillatory Rotation Figure 9.5 - Phases of a Wave as series of Expansions and Contractions Figure 9.9 - Wave Disturbance from 0 Center to 0 Center Figure 12.10 - Russells Locked Potential Wave Figure 12.12 - Russells Multiple Octave Waves as Fibonacci Spirals Figure 13.13 - Gravity Syntropic and Radiative Entropic Waves Figure 14.07 - Love Principle: Two sympathetic waves expanding from two points have one coincident centering locus In the Wave lies the Secret of Creation Longitudinal Wave Nodal Waves Raleigh Wave Standing Wave Standing Waves Table 12.02.01 - Wavelengths and Frequencies Three Main Parts of a Wave Transverse Wave wave wave number WaveLength

Created by Dale Pond. Last Modification: Sunday February 13, 2011 03:10:43 MST by Dale Pond.