# Magnetic Resonance Amplifier

An Introduction to the Magnetic Resonance Amplifier by Joel McClain & Norman Wootan original document

With low-level ultrasonic input signals, the Magnetic Resonance Amplifier (MRA) produces usable direct current power at levels above unity. This circuit is based upon the work and theories of John Ernst Worrell Keely, and is offered into the public domain in his memory.

Introduction Without lengthy discussion about the aether, tetrahedral geometric aggregate resonance or the Rule of Nines, it is possible to understand this circuit as basically a tuned magnetic and quartz amplifier.

However, it was necessary to study those subjects in order to design and build the MRA, so if you want to fully realize how it works, avail yourself of the files on KeelyNet which contain all of that and much more.

In the MRA schematic below, there is a tunable low-power oscillator which supplies a signal to one side of a barium titanate transducer. The opposite side of the transducer is connected to a primary coil which is wrapped around a barium ferrite magnet core. The opposite end of the primary goes back to the oscillator.

A secondary is wrapped around the primary and is connected to an ordinary bridge rectifier, and the output of the bridge is applied to a DC load. A filter capacitor can be used on the output of the bridge, and was used on the MRA which we built. Additionally, a load resistor across the capacitor will keep the output DC from getting too high as the circuit is tuned. We found that a 30 ohm, 10 watt resistor was sufficient.

Once this has been assembled, put a voltmeter across the output resistor to monitor the voltage rise as the circuit is tuned. Adjust the oscillator frequency to provide the highest DC output. During this process, be aware that the voltages across the piezo and the coil will be very much higher than the signal level which you are applying. We have seen combined voltages of almost 1,000 volts AC with only 30 volts AC of signal input.

When the circuit is tuned, the magnet will be "singing" at around 8,000 to 11,000 Hz. If the piezo sings, you are exceeding its power capabilities and will need to reduce the number of turns on your primary. The frequency that resonates both the piezo and the magnet at optimum resonance will be three times (three octaves above) the frequency at which the magnet is singing.

This is the nine harmonics that are mentioned in the Rule of Nines.

To test the circuit, place a precision, high wattage, low ohm resistor in series with the output from the oscillator to the piezo, and measure the voltage drop. It should be very small, less than 0.1 volt AC. Use this value to determine current in the series circuit, and then calculate power.

Next, measure the DC voltage across your output load resistor, and once again calculate power. You should be between three to four times above the previously calculated input power.

Once the circuit is in operation, you will note that the voltage will vary by 0.1 volt DC or more, depending upon the time of day. This is due to the nature of etheric forces inherent in the Earth's magnetic field. Watch for peak voltage at or before sunrise.

In our circuit, we measured 0.084 volt AC drop across a 2 ohm series resistor, for a total of 0.685 W dissipation in the primary. With this, we attained 2.75 W of output power and used this to drive a lamp and a motor. Increasing the signal voltage had the effect of decreasing the primary current while boosting output power, thus improving the power gain ratio. We believe that larger power systems can be built by using larger coils, more piezos, and a lower frequency, as long as the aggregate combination is within the resonant frequency range of the components.

The MRA is essentially a means of releasing the electrical energy stored in magnets. As such, it is an AC battery with DC output. It can be used for a portable, self-charging power supply with a solid state oscillator and rechargeable battery. For those who want a synopsis of the technology, the following paragraphs are offered, but it is strongly suggested that you follow up this reading with a more thorough study of the KeelyNet files.

Matter = Energy. To change matter, change the energy. Creation of a magnet is achieved by a process which causes the matter to be both expanded and compressed at the same time, with the result that a magnet is in a constant state of collapse. This is why magnets attract material with similar lattice structures, as they attempt to fill the energy void which created them. The "domains" of the magnet are fixed after the process of magnetization, and the only way to extract electrical energy is to physically spin a coil relative to a magnet.

However, it is also possible to induce ((virtual rotation by applying the resonant frequency of the magnet, which causes the lattices and the domains to vibrate. However, the power required to do this is greater than the energy released by the virtual rotation. Therefore it is necessary to increase the vibration without using excessive current.

The piezo has a virtually inexhaustible supply of free electrons, and it releases them when it is stressed. Using the piezo in series with the primary coil will almost eliminate primary current, because it is voltage which stresses the piezo, not current. Therefore the piezo can be stressed with very little actual power, and provide the current to the primary coil which vibrates the domains of the magnet.

The piezo is the catalyst for the circulating current with the primary coil. The circulating current is additive, and this is the reason for the high potentials developed across both the piezo and the primary coil.

It is at this point that resonance becomes important. You must have three octaves of separation between the magnet resonant frequency and the signal supplied to the piezo. The circulating currentis rich in harmonics, and this is necessary for the operation of the circuit.

Although the circuit is simple, it utilizes the concepts of phi, of virtual rotation, of tetrahedral geometry, piezo and transformer theory, and electrical knowledge. It is not suggested as a beginner project, because of the high voltages present. For engineers and technicians of experience, it may be difficult to accept that the MRA is above unity. The ramifications are enormous. Hopefully, it will help to build a better world.

?

The Magnetic Resonance Amplifier: Description of Operation by Joel McClain