Loading...
 

Magic Number

Magic number (physics)
In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a 'magic' number of protons or neutrons are much more stable than other nuclei..

Magic Number


The seven most widely recognized magic numbers as of 2019 are 2, 8, 20, 28, 50, 82, and 126 (sequence A018226 in the OEIS)..
For protons, this corresponds to the elements helium, oxygen, calcium, nickel, tin, lead and the hypothetical unbihexium, although 126 is so far only known to be a magic number for neutrons. Atomic nuclei consisting of such a magic number of nucleons have a higher average binding energy per nucleon than one would expect based upon predictions such as the semi-empirical mass formula and are hence more stable against nuclear decay..
The unusual stability of isotopes having magic numbers means that transuranium elements could theoretically be created with extremely large nuclei and yet not be subject to the extremely rapid radioactive decay normally associated with high atomic numbers. Large isotopes with magic numbers of nucleons are said to exist in an island of stability. Unlike the magic numbers 2–126, which are realized in spherical nuclei, theoretical calculations predict that nuclei in the island of stability are deformed..
Before this was realized, higher magic numbers, such as 184, 258, 350, and 462 (sequence A033547 in the OEIS), were predicted based on simple calculations that assumed spherical shapes: these are generated by the formula.. It is now believed that the sequence of spherical magic numbers cannot be extended in this way. Further predicted magic numbers are 114, 122, 124, and 164 for protons as well as 184, 196, 236, and 318 for neutrons. However, more modern calculations predict 228 and 308 for neutrons, along with 184 and 196..
Doubly Magic
Nuclei which have neutron number and proton (atomic) numbers each equal to one of the magic numbers are called "doubly magic", and are especially stable against decay.13 The known doubly magic isotopes are helium-4, helium-10, oxygen-16, calcium-40, calcium-48, nickel-48, nickel-56, nickel-78, tin-100, tin-132, and lead-208. However, only the first, third, fourth, and last of these doubly magic nuclides are completely stable, although calcium-48 is extremely long-lived and therefore naturally occurring, disintegrating only by a very inefficient double beta minus decay process..
Doubly-magic effects may allow existence of stable isotopes which otherwise would not have been expected. An example is calcium-40, with 20 neutrons and 20 protons, which is the heaviest stable isotope made of the same number of protons and neutrons. Both calcium-48 and nickel-48 are doubly magic because calcium-48 has 20 protons and 28 neutrons while nickel-48 has 28 protons and 20 neutrons. Calcium-48 is very neutron-rich for such a relatively light element, but like calcium-40, it is stabilized by being doubly magic..
Magic number shell effects are seen in ordinary abundances of elements: helium-4 is among the most abundant (and stable) nuclei in the universe14 and lead-208 is the heaviest stable nuclide..
Magic effects can keep unstable nuclides from decaying as rapidly as would otherwise be expected. For example, the nuclides tin-100 and tin-132 are examples of doubly magic isotopes of tin that are unstable, and represent endpoints beyond which stability drops off rapidly. Nickel-48, discovered in 1999, is the most proton-rich doubly magic nuclide known..
At the other extreme, nickel-78 is also doubly magic, with 28 protons and 50 neutrons, a ratio observed only in much heavier elements, apart from tritium with one proton and two neutrons (78Ni: 28/50 = 0.56; 238U: 92/146 = 0.63)
In December 2006, hassium-270, with 108 protons and 162 neutrons, was discovered by an international team of scientists led by the Technical University of Munich, having a half-life of 9 seconds.17 Hassium-270 evidently forms part of an island of stability, and may even be doubly magic due to the deformed (American football- or rugby ball-like) shape of this nucleus..
Although Z = 92 and N = 164 are not magic numbers, the undiscovered neutron-rich nucleus uranium-256 may be doubly magic and spherical due to the difference in size between low- and high-angular momentum orbitals, which alters the shape of the nuclear potential..
Read more here at these links
https://www.secretsofuniverse.in/magic-numbers-in-physics/
https://www.chemeurope.com/.../Magic_number_%28physics%29...
https://en-academic.com/dic.nsf/enwiki/298492
https://www.nuclear-power.com/.../atomic.../magic-numbers/

Created by Dale Pond. Last Modification: Sunday March 27, 2022 16:24:21 MDT by Dale Pond.