thermal vibration

The concepts of temperature and thermal equilibrium associated with crystal solids are based on individual atoms in the system possessing vibrational motion. The classical theory of thermal energy by atomic vibrations, though providing suitable explanations at elevated temperatures, has proved unsatisfactory at reduced or cryogenic temperatures. Quantum mechanics has subsequently provided theories based upon statistical probability that have provided possible mechanisms to explain some of the observed phenomena. A system of vibrating atoms in a crystal is highly complicated, and beyond the realm of any realisable theoretical method of analysis or calculations to verify spectral measurements from the total thermal energy of a crystalline substrate.

When a particle is bound to a crystal, the energy can only have discrete values as defined by the energy band structure. The quantum-mechanics of a one-dimensional simple harmonic oscillator gives permitted energies of $(n+\frac{1}{2})$?? where ? is the angular frequency and n is the permitted energy integer. At a position of minimum energy (0K) the energy can never be zero, but has energy of $\frac{1}{2}$??(zero-point energy) and as such will still provide crystal vibration.

As an atom can vibrate independently in three dimensions it is equivalent to three separate oscillators. The total thermal energy for N atoms will then be 3NkT, ignoring the $\frac{1}{2}$? term, the specific heat required to change the temperature by one degree will then be 3Nk where the specific heat of a solid for a given number of atoms is independent of temperature if N is the Avogadro number (6.02x1023). A detailed calculation of this form would require a knowledge of the number of atoms vibrating with frequencies $?1 \dots ?n$, which would depend on the density of states, and integration over the whole range of atomic vibrational frequencies would be required.

The thermal vibrations in a solid produce atomic displacements, which in a three dimensional lattice can be resolved into different states of polarization such that vibrations parallel to the wave vector are longitudinal waves and the two directions at right angles to the wave vector are transverse waves. As the rules of quantum mechanics apply to all the different atomic vibrations in the crystal, the lattice pulsates as a complete assembly in discrete energy steps of ??(phonons). The phonon is related to both the frequency of vibration and the temperature. If the temperature is raised, the amplitude of atomic vibration increases, and in quantum terms this is considered as an increase in the number of phonons in the system.

The concept of the phonon is therefore considered as the quantum of lattice vibrational energy onto which is superimposed a complex pattern of standing and/or travelling waves that represent changes in temperature. If the crystal is at a uniform temperature the standing wave concept is adequate as the phonon vibrations are uniformly distributed. http://www.reading.ac.uk/ir-absorptiontheory-thermalvibrations.aspx ©

The Lindemann relationship between the Debye characteristic temperature and the melting point may also be obtained from a consideration of the temperature variation of thermal diffuse x-ray scattering. The amplitude of thermal vibrations of the atoms in cubic crystals can be expressed in terms of the distance between neighbouring atomic positions and the melting point. This leads to a correlation of the relative increases of disorder on melting of body-centred cubic and face-centred cubic crystals with the thermal behaviour of the elastic constants, electrical resistance, atomic diffusion, specific heat, thermal expansion and thermal conductivity. A `law of corresponding states' may be said to exist where, at corresponding temperatures, the amplitudes of atomic vibration are the same fraction of the distance between neighbouring atomic positions in the solid. The Debye temperature factor is found to be inversely proportional to the melting point for cubic structures. http://iopscience.iop.org/article/10.1088/0370-1301/68/11/321/meta ©

See Also

Co-vibration

Compound Vibrations

electric vibration

Electricity from Vibration

ELECTRICITY FROM VIBRATION - Snell

ENERGY FROM VIBRATION - CONDENSATION OF MATTER THROUGH VIBRATORY INDUCTION

Equation by vibration

etheric vibration

Etheric Vibration. - The Key Force

Figure 3.11 Thermal Polarization

first and second order of atomic vibration

frequencies of consciousness vibrations

Healing Vibration, Personal

HEAT FROM VIBRATION

Inaudible Vibration

INAUDIBLE VIBRATIONS

INDUCTED VIBRATIONAL RANGES

interatomic vibration

intersympathetic vibration

Isothermal Process

Law of Corporeal Vibrations

Law of Harmonic Vibrations

Law of Sympathetic Vibration

Laws of Vibration

MASS VIBRATIONS

Modes of Vibration

Modes of Vibration - Annotated

molecular vibration

MOLECULAR VIBRATIONAL RANGE

negative vibration

nodal vibration

Orders of Vibration

Part 08 - What Vibration Is. - Part 1

Part 09 - What Vibration Is. - Part 2

Part 13 - Rotation from Vibration and Oscillation

Part 26 - Science of Sound Vibration Acoustics and Music

PHYSICAL VIBRATIONS

Planetary Vibration

positive vibration

Pressure produced by Vibration

PRESSURES PRODUCED BY VIBRATION

progressive vibration

propulsive vibration

propulsive vibrations

receptive vibration

REVOLVING SPHERE ROTATED BY VIBRATIONS

ROTATION FROM VIBRATION

Rotational-vibrational coupling

Rovibrational coupling

Sound and Vibration Definitions

spiritual order of vibration

sympathetic etheric vibration

Sympathetic Resonant Vibration Sympathetic Vibration SYMPATHETIC VIBRATION - Snell Sympathetic Vibration in Healing Sympathetic Vibration in Plants Sympathetic Vibration Theory Sympathetic Vibration v Newtonian Physics Table 14.03 - Ranges of Forces Vibration Forms Types and Governing Laws The Nature and Dynamics of Vibration and Toroids THE PHENOMENA PROPERTIES AND LAWS OF VIBRATION ENERGY thermal thermal concentration thermal condition thermal force Thermal negation thermal reduction **Thermal Runaway** transmittive vibration TRANSMUTATION BY SYMPATHETIC VIBRATION **Universal Vibration** velocity of vibration Vibration vibration fraction vibration ratio vibration signature **VIBRATIONAL COINCIDENTS VIBRATIONAL FREQUENCIES VIBRATIONAL INTERFERENCE** what vibration Is 1.22 - Definitions of Vibration

12.30 - Thermal Radiation and Thermal Vacuum or Cold

13.09 - Sphere Rotated by Vibrations

15.09 - Dissociating Water with Ultrasonic Vibration - Puharich

19.04 - Rotation from Vibration

8.1 - Conventional View of Vibration

8.15 - Vibration

8.16 - Law of Corporeal Vibration

8.17 - Law of Harmonic Vibrations

8.2 - Oscillation versus Vibration

9.13 - Speed of Sonorous Vibrations