A pendulum swings to and fro. On the left side is the Negative side or pole. On the right side is the Positive side or pole. When swinging to the right the action is positive until the swing begins to come back to the center or Neutral point. During the swing back to the center the positive polarity takes on a Negative modulation because Negative polarization is a "center seeking" force whereas the Positive is an expanding force. The same holds true but in reverse for the Negative half of the pendulum's swing.

Harmonic Pendulum Motions

"The time period of a pendulum with a moveable weight is most easily ascertained by experiment and not by calculation. Theoretically, in the case of a "simple" pendulum - that is, an imaginary pendulum without weight except at the bob - the period of oscillation varies inversely as the square root of the length, i.e., if the length be increased four-fold, the time period will be one half what it was before. A simple pendulum does not however, exist practically, and though the law above enunciated may serve to give a general idea of the lengths corresponding to different time periods, these are really only to be arrived at with accuracy by trial." Harmonic Vibrations and Vibration Figures, page 37

"The pendulum which swings one way has its invisible counterpart which swings the other way. This drawing illustrates a sun at the crest of its wave which will eventually be voided by its counterpart, awaiting at its trough, and reborn again from the same point. See Fig. 66." [Atomic Suicide, page 257]

See Also

Figure 8.9 - Four Fundamental Motions of a Pendulum Harmonograph Pendulograph Sympathetic Oscillation