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Abstract

The forces of magnetism, electricity, and gravity are distortions of
a single primordial field that permeates the universe and comprises
the fabric of existence. Vorticity in this field gives rise to magnetic
fields. Dynamic undulations give rise to electric fields. Compres-
sion or divergence gives rise to gravitational fields. When put into
mathematical form, these relations reveal how electric and magnetic
fields can be arranged to produce artificial gravity and many other
exotic phenomena such as time distortion and the opening of portals
into other dimensions.
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Chapter 1

Introduction

In this paper I will detail how the forces of electricity, magnetism,
and gravity arise from a single field. Although you need to know
vector calculus to fully understand and use the equations below,
the text itself paraphrases the math and therefore allows any pa-
tient layman to follow along. The math reveals many ways to cre-
ate gravity using only electric, magnetic, or electromagnetic fields.
From there, seemingly impossible feats of artificial time dilation,
antigravity, free energy, and time travel become feasible.

1.1 Basics

Knowing the language is essential to understanding any communi-
cation. The following math and physics terms must be used for
conciseness and accuracy in discussing specific concepts. Once you
understand them, this paper will be more transparent.

1.1.1 Math Terms

Scalar Field - a field where each coordinate has a single value
assigned to it. An example would be air pressure; at each point in
the atmosphere there is one value of pressure. Height is another; on
a topographic map, each coordinate has a single value of height.
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(size of circle denotes strength of field at that point)

Vector Field - a field where each coordinate has values of mag-
nitude and direction. An example would be wind flow; at each point
in the atmosphere the air moves at a certain speed in a certain di-
rection.

Derivative - specifies how much one measured value changes
with respect to another. For instance, the derivative of space with
respect to time is velocity.

Gradient - the change in scalar value over distance. A gradient
in height would signify an incline. Because the slope at various
points has a certain steepness and direction, the gradient of a scalar
field is a vector field.

Curl - the vorticity in a vector field. A curl in water current
means there is circulation, like an eddy. The curl at a point is
defined as a vector that points in the axis of circulation and has
magnitude indicating the degree of vorticity. The curl of a vector
field is another vector field at right angles to it.

Divergence - the degree of compression, expansion, inflow, or
outflow of a vector field. Water flowing down the drain or air being
sucked into a vacuum nozzle are examples. The divergence of a
vector field is a scalar field.

Time Derivative - the rate at which something changes over
time. If the temperature changes 24 degrees in one day, its time
derivative would be one degree per hour.



6 Chapter 1. Introduction

1.1.2 Physics Terms

Superpotential field - penultimate field from which all other fields
arise.

Potential field - arises from a time derivative, divergence, or
gradient in the superpotential field. Potential fields give rise to force
fields, but are simpler in form and can exist even in the absence of
force fields.

Force field - arises from a gradient, curl, or time derivative of
the potential field. This can impart acceleration upon corresponding
particles or change their direction of motion. We are familiar with
the three main force fields: electric, magnetic, and gravitational.

Scalar superpotential - superpotential field whose units are
in Webers. It is a scalar field made of magnetic flux. Every point
in spacetime has a certain value of Webers associated with it. This
is the scalar superpotential field. It is the infamous “aether” that
scientists once believed served as a medium for the propagation of
electromagnetic waves.

Electric scalar potential - potential field from which electric
force fields arise. It is better known as “voltage field.” It arises from
the time derivative of the scalar superpotential. It is a scalar field
with units of Volts or Webers/second. When the value of flux at a
point changes over time, a voltage or electric scalar potential exists
there.

Magnetic vector potential - potential field from which mag-
netic force fields arise. It arises from the gradient in the scalar super-
potential. It is a vector field with units of Weber/meter. The ether
flow surrounding and being dragged along by an electric current is
one example of the magnetic vector potential. James Maxwell con-
sidered this the fundamental force in electromagnetism and likened
it to a form of electromagnetic momentum.

Gravitational potential - potential field from which gravita-
tional force fields arise. Here it is revealed to be a divergence in
the magnetic vector potential. Most importantly, it determines the
rate of time.

Electric Field - field that imparts force to charged matter. It
arises either from a gradient in the electric scalar potential or time
derivative of magnetic vector potential. This is a force field with
units of Volts/meter or Webers/meter-second. An electric field is
essentially voltage changing over some distance, but is equivalently
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made of a time-changing magnetic vector potential field.
Magnetic field - field that accelerates matter depending on

its magnetic moment. It arises from the curl in magnetic vector
potential. Its units are Webers/meter2. Whenever there is vorticity
in the magnetic vector potential, a magnetic field exists pointing
along the axis of that rotation.

Gravitational field - field that exerts force upon a mass in
proportion to its mass. It arises from a negative gradient in the
gravitational potential, or equivalently a gradient in the divergence
of the magnetic vector potential.

Transverse wave - a wave whose displacements are perpendic-
ular to the direction of travel. Shaking a rope sends a transverse
wave down its length. Regular electromagnetic waves such as ra-
dio or light waves are transverse because the electric and magnetic
field vectors comprising them point perpendicular to the direction
of propagation.

Longitudinal wave - a wave whose displacement is in the direc-
tion of motion. Pushing a slinky in from one end sends a compres-
sive wave towards the other end. Sound waves are longitudinal also,
whereby air molecules are successively compressed and expanded as
the wave passes by.

1.1.3 Symbols

Symbol Name Units
χ scalar superpotential Wb (Weber)
φ electric scalar potential V (Volts)
ϕ gravitational potential m2/ s2
~A magnetic vector potential Wb / m
~E electric field V / m
~B magnetic field Wb / m2

~g gravitational field m / s2

c speed of light m / s
G gravitational constant N m2 / kg2

m mass kg
q electric charge C
ρ electric charge density C / m3

εo vacuum permittivity F / m
µo vacuum permeability Wb / (A · m)



Chapter 2

Potential Fields

Potential fields are less tangible and invariant than the physical
force fields they may produce. If force fields are likened to the sur-
face waves of the ocean, potential fields are more like the hidden
underwater currents, while the superpotential represents the water
itself. Potential fields really do exist and are not just convenient
mathematical abstractions. It’s just that their effects are subtle
and quantum in nature, therefore harder to measure and not imme-
diately obvious to our senses.

2.1 Scalar Superpotential

The scalar superpotential is the substrate of physicality, the ether
permeating and underlying the universe, from which all matter and
force fields derive.

It is a scalar field, meaning each point in that field has one value
associated with it. This value is the degree of magnetic flux at that
point, whose unit is the Weber. This is not the magnetic force field
we all know, composed of vectors whose units are Wb/m2, but a
magnetic flux field of scalar values whose unit of measure is simply
Wb.

Its symbol is χ (Greek letter chi). Scalar superpotential may be
written as: χ = χ(x, y, z, t), an equation assigning a flux value to
each coordinate in spacetime.

By itself, the absolute flux value has no direct physical signifi-
cance in terms of measurable forces, however it is closely associated
with the quantum phase θ of a wave function as follows:
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χ =
h

q
θ

So its effects are limited to the quantum domain and determine
the degree of intersection and interaction between different probable
realities. However, certain distortions in its distribution do give rise
to measurable forces.

2.2 Magnetic Vector Potential

The magnetic vector potential ~A is the gradient of the scalar su-
perpotential, meaning the flux must change over some distance to
comprise a vector potential:

~A(x, y, z, t) = ∇χ

The absolute value of flux or superpotential does not figure into this,
just as altitude above sea level does not figure into the measurement
of “inclination” of a hillside:

∇χ = ∇(χ+ χo)

While certain perturbations of the vector potential give rise to
certain force fields, by itself ~Ao has no physical significance in terms
of measurable forces, but because it is made of superpotential, it
alters the quantum phase θ of charged particles per the Aharonov-
Bohm effect:

χ =

∫
~A · dl

θ =
q

h

∫
~A · dl

James Maxwell also considered ~A the primary field in electro-
dynamics and likened it to electromagnetic momentum.

2.3 Electric Scalar Potential

The electric scalar potential φ, whose unit is the Volt (or Wb/s), is
the time derivative of the scalar superpotential:
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φ(x, y, z, t) =
∂χ

∂t

When the scalar superpotential changes over time, an electric
scalar potential arises. That is to say, a voltage field is identically
a time-varying scalar superpotential field.

As in the case of the magnetic vector potential, a change in
the absolute scalar superpotential value does not change the scalar
electric potential:

∂χ

∂t
=
∂(χ+ χo)

∂t



Chapter 3

Force Fields

Force fields are what we visibly experience everyday. Through
forces, kinetic or potential energy is imparted to matter and changes
ensue. It is through forces that we are directly impacted by the
world, and directly impact the world. The electric and magnetic
fields are what trigger our five physical senses, and it is through
them that electronic measuring devices operate.

Since the potential and superpotential are hidden beneath force
fields like computer code behind a digital image, senses and instru-
ments responsive only to electromagnetic force fields cannot detect
them.

3.1 Electric Field

The electric force field ~E is the result of certain distortions in the
scalar potential φ and/or vector potential ~A.

Electric field is defined as the negative gradient of the electric
scalar potential; it is the “slope” of a voltage field (scalar electric
potential field) that declines over some distance:

~E(x, y, z, t) = −∇φ

where “∇” denotes the “gradient.” Written in terms of the super-
potential:

~E = −∇∂χ
∂t

By bringing the gradient inside the time derivative,
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~E = − ∂

∂t
∇χ

it’s clear that the electric field is also the negative time gradient of
the magnetic vector potential:

~E = −∂
~A

∂t

By combining these two contributors, the total electric field may be
written as:

~E = −∇φ− ∂ ~A

∂t

3.1.1 Electric Singularities

The electric field of a point charge (like an electron) is:

~E =
q

4πε0

1

r2
r̂

This field is defined everywhere except at r = 0, where it blows
up to infinity; there is a singularity there. How physics deals with
this singularity is worth explaining, because the same techniques
will apply in the upcoming discussion of magnetic fields.

Gauss’s Law states that if you draw a spherical surface around a
group of charges and measure the electric flux through that surface,
that flux will stay the same no matter how the charges inside are
distributed. It depends only on the quantity of charge enclosed.
The charges can be spread out or be a single point charge; both
cases should give the same answer.

As far as real world measurements are concerned, it doesn’t
matter that a point charge has an infinite electric field at the cen-
ter; at the distant point of measurement, the electric field is finite
and the same as if the charge were diffused into a cloud without a
singularity.

The singularity does matter in showing how the usual mathe-
matical approach fails, thereby indicating a more sophisticated ap-
proach is needed to handle that special case.

Here is an example. The differential form of Gauss’s Law states:

∇ · ~E =
ρ

ε0
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This says that E has a divergence in the presence of a charge
density. It means the divergence should be nonzero so long as there
are charges within the region being considered. But what if they
are in the form of a point charge? Let’s take the divergence of the
point charge equation:

∇ · ( q

4πε0

1

r2
r̂) =

q

4πε0

∂

∂r
(r2

1

r2
) = 0

It appears that ∇ · ~E = 0 even though there is a charge within
the region, in contradiction to Gauss’s Law. But notice this is only
true for r 6= 0. At the origin, there is division of 0 by 0 which
is undefined. It’s the fault of trying to use differentiation at the
singularity point. A better method would be using integration to
approach the singularity from its surroundings. This may be done
as follows:

The divergence theorem states that the volume integral of a
field’s divergence equals the field’s flux through that volume’s sur-
face. ∫

V

(∇ · ~E)dτ =

∮
S

~E · d~a

We can calculate the term on the right using a point charge and
a spherical surface:∮

sphere

[
q

4πε0

1

r2
r̂] · [r2sin(θ)dθdφr̂]

=
q

4πε0

∮
sin(θ)dθdφ

=
q

4πε0

∫ π

0
sin(θ)dθ

∫ 2π

0
dφ

=
q

4πε0
(2)(2π)

∮
S

~E · d~a =
q

ε0
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So the flux through the sphere is q/ε0 regardless of how the
charges inside are distributed, as it only depends on the quantity of
charge enclosed. Then this must also be the value of the left term:∫

V

(∇ · ~E)dτ =
q

ε0

What then is the divergence of the electric field from this point
charge? We know that ∇ · ~E = 0 everywhere but at the origin.
Therefore the flux comes solely from the singularity at the center.

Here is where physicists invoke the three-dimensional Dirac delta
function defined as:

δ3(r) =

{
+∞, r = 0

0, r 6= 0

It is a spike of infinite amplitude and infinitesimal width located
at the origin. It’s the very essence of a singularity, except its integral
over all space is 1: ∫

V

δ3(r) dτ = 1

We can use this delta function to properly represent the diver-
gence of a point charge’s electric field. Multiplying through by q/ε0:∫

V

[
q

ε0
δ3(r) ]dτ =

q

ε0
=

∫
V

(∇ · ~E)dτ

Then by comparing terms, we see that:

∇ · ~E =
q

ε0
δ3(r)

The three dimensional delta function has units of inverse vol-
ume, so this function times charge is really just charge density:

q

ε0
δ3(r) =

ρ

ε0

Instead of charge being spread out through some finite volume
and thus being a regular charge density, the delta function packs
the charge into an infinitesimal point at the origin, for it is zero
everywhere except at the origin. Either gives the same divergence.
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That is how the singularity may be successfully represented while
upholding Gauss’s law:

∇ · ~E =
ρ

ε0

3.2 Magnetic Field

The magnetic force field ~B arises from vorticity or curl in the mag-
netic vector potential:

~B(x, y, z, t) = ∇× ~A

where “∇×” signifies “curl”, the degree of vorticity in the field at
some particular point in spacetime.

Since the vector potential is gradient of the superpotential, the
magnetic field can also be written in terms of the scalar superpo-
tential:

~B = ∇×∇χ

So a magnetic field is simply the curl of the gradient of the scalar
superpotential. As you can see, through a series of distortions, the
scalar superpotential ultimately gives rise to a magnetic field. First
it varies over some distance to create the magnetic vector potential,
then the variation curls or twists to produce the magnetic force
field.

Readers may object because the curl of a gradient is said to
always be zero. But that is only true for simply connected regions.
If there is a singularity at the center, then there can be a nonzero
curl around the center even though everywhere else, the curl of
the gradient is indeed zero. This will be demonstrated in the next
section.

3.2.1 Magnetic Singularities

Consider a vector potential field of the form:

~Acylindrical =
1

s
φ̂

~Acartesian =
−y

x2 + y2
x̂+

x

x2 + y2
ŷ
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This represents a circulating field that drops off linearly with
distance from the vertical axis. Its curl is zero everywhere except
along the z axis, where it is undefined.

∇× ~A = −∂(1/s)

∂z
ŝ+

1

s

∂

∂s
(s

1

s
)ẑ

Whereas the electric singularity is a point, the magnetic singu-
larity is a string. Here it is oriented vertically along the z axis with
the field circulating around it.

The proper approach to this problem is to use Stoke’s Theorem
to first calculate the amount of circulation around the origin, which
gives the value of magnetic flux that is present.∮

P

~A · d~l =

∫
S

∇× ~A · d~a = χ

∮
P

~A · d~l =

∮
P

1

s
φ̂ · (s dφ φ̂) =

∮
P

dφ = 2π
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The singularity string contributes a flux of 2π for a circular path
drawn around it. From Stoke’s Theorem we see that the surface
integral of the curl must equal this value.∫

S

∇× ~A · d~a = 2π

Here we can invoke the 2 dimensional Dirac delta function de-
fined as:

δ2(s) =

{
+∞, s = 0

0, s 6= 0

∫
S

δ2(s) da = 1

For the surface, we may use a unit disc lying in the xy plane.
Then:

∫
S

∇× ~A · d~a =

∫
S

(∇× ~A)ẑ · ẑ da =

∫
S

(∇× ~A) da = 2π

By comparing this to the delta function integral, we see that

∇× ~A = 2πδ2(s)

Since δ2(s) has units of inverse area, the curl represents flux per
unit area, which is in agreement with the magnetic field ~B = ∇× ~A
being a magnetic flux density with units Wb/m2.

So an irrotational vector potential produces a magnetic field, but
only in the form of a flux line at the center of rotation. Everywhere
else, the curl is zero. In other words, the entire magnetic field is
concentrated into a singularity string, just as the charge density in
the previous example was concentrated into a single point. We see
this same phenomenon in superfluids, in which irrotational vortices
or singularity strings arise when stirred. This suggests the ether in
which magnetic flux lines exist may actually be a superfluid.
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3.2.2 Superpotential of a Magnetic Field

What is the underlying scalar superpotential of ~A = φ̂/s? Well, the
gradient of the superpotential gives rise to the vector potential,

∇χ =
1

s
φ̂

By comparing this to the definition of gradient in cylindrical
coordinates,

1

s
=

1

s

∂χ

∂φ

χ =
s

s
φ

Outside the origin, this simplifies to χ = φ while at the origin,
the flux was already calculated to be 2π.

χ =

{
2π, s = 0

φ, s 6= 0

So this is the fundamental superpotential field of an irrotational
vector potential, which has a singularity at the central axis of ro-
tation that produces a nonzero ~B at the origin. Since ~B is zero
everywhere else, χ is allowed to have a gradient everywhere else
besides the origin.

But what does this mean? The χ field is a corkscrew of infinite
width that winds around the z axis. The infinite width is not a
problem, it simply means that phenomena that depend on the path
around the flux do not depend on distance from it.

One example is the Aharonov-Bohm effect, where an electron
traveling around a long thin solenoid picks up a phase factor that
depends on the magnetic flux inside the solenoid, but not distance
from it. If this solenoid were bent into a closed toroid so that all
flux were absolutely confined inside, the effect would still exist.

Another example is a loop of wire wound around a ferromagnetic
rod in which there is a changing magnetic field. The electromotive
force induced by the changing magnetic flux is independent of the
diameter of the loop. If the flux were completely confined inside a
toroidal core, it would still produce the same electromotive force.
That is because the electron isn’t actually experiencing the flux
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itself, but rather the corkscrew superpotential surrounding the flux
lines.

A changing flux creates a changing gradient in the superpoten-
tial, and an electron in that path will be pumped along the gradient.
Stated another way, a changing gradient generates an electric field,
which places a force on the electron as expected.

3.3 Gravitational Field

There is nothing truly new in the equations given so far concerning
the scalar superpotential, magnetic vector potential, electric scalar
potential, electric force field, or magnetic force field. All of them you
will find in, or can derive from, standard electrodynamics textbooks
and the works of James Clerk Maxwell.

Now, if a gradient creates ~A, curl of ~A creates ~B, and time rate
of change creates ~E, then what might divergence of ~A create? Here
is where my Scalar Superpotential Theory departs from mainstream
science by making one key postulate: Divergence of the magnetic
vector potential is proportional to the gravitational potential.

ϕ = β∇ · ~A = β∇2χ

where β is a constant of proportionality and “∇2χ” is the Laplacian
of the scalar superpotential signifying whether χ at a given point is
greater or less than the surrounding χ.

This is the central postulate of my theory. It implies that gravity
arises from compression or rarefaction in the superpotential. One
example: when the vector potential surrounding an electric current
is directed inward toward a common center. Gravity can therefore
be neutralized by decompressing the ether, say through an outward
current flow that pushes ether outward from a central point.

Gravitational potential is analogous to air pressure. This is dif-
ferent from the gravitational force field, which is analogous to wind.
Just as difference in air pressure creates wind, so does change in the
gravitational potential over some distance produce a gravitational
force field that imparts acceleration to free falling objects.

The gravitational force field is the negative gradient of the grav-
itational potential:

~g = −∇ϕ
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Written in terms of the magnetic vector potential and scalar super-
potential:

~g = −β∇(∇ · ~A)

~g = −β∇(∇ · ∇χ) = −β∇(∇2χ)

The constant β is unknown to me at this time, but it can be found
through electrogravitational or gravitomagnetic experiments, or de-
rived from fundamental knowledge of the structure of spacetime. It
relates electromagnetism to gravity and allows one to calculate the
electromagnetic power requirements of all other setups to achieve a
desired degree of gravitational and thus spacetime warping.

3.3.1 Vector Potential Function of Gravity

Let’s examine how ~A may be distributed around a mass. If its
divergence is indeed the gravitational potential, then like the latter
it must drop off as 1/r. By the definition of divergence:

1

r2
∂

∂r
(r2Ar) =

1

r

~A = (
1

2
+Ao)r̂

We may redefine the constant to include the 1/2:

~A = Ao r̂

That is, the vector potential around a mass points in the radial
direction and is constant. So even if the mass were a lightyear away,
its vector potential at your location would remain Ao. Hence we are
being interpenetrated by the ~A of every mass in the universe.

What is Ao? Well, if the gravitational potential is proportional
to the divergence, then:

β∇ · (Aor̂) = −Gm
r

β
Ao
r

= −Gm
r

Ao = −G
β
m
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So Ao is simply proportional to mass. In other words, the
amount of mass is what determines the constant value of vector po-
tential that it radiates in all directions. Conversely, by artificially
changing this value you would be altering the mass.

If we take the gradient of the divergence of this, we get the
gravitational force field in terms of ~Ao:

∇(∇ · ~A) = ∇(
Ao
r

) =
1

r2
∂

∂r
(r2

Ao
r

)

∇(∇ · ~A) =
Ao
r2
r̂

~g = −β Ao
r2
r̂

3.3.2 Superpotential Function of Gravity

The superpotential can be found just as easily from the definition
of gradient:

∂χ

∂r
= Ao

χ = Ao r + χo

For every distance from the center of mass, there is a unique
superpotential value. This superpotential increases linearly with r
and is radially symmetric for a stationary symmetric mass. Like
the electric scalar equipotential surfaces around a charge, the su-
perpotential is distributed in concentric shells around mass like the
layers of an onion.

q m
V

V

V3

2

1 X

X

X

1

2

3
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Each shell is a surface with value Ao r. Mass determines how
densely packed these concentric shells are, which is the aforemen-
tioned compression or rarefaction of the ether.

At the center of mass, there is only a single constant χo of any
value. Whatever the value, it has no bearing on the gravitational
potential or gravitational force. It can even fluctuate in time with-
out affecting them. However, it may have significant quantum ef-
fects; for example, for two masses to be completely tangible to each
other, they might need to share the same χo, which acts as an index
variable signifying the timeline or universe to which it belongs.

3.3.3 Gravitational Flux

If we apply Gauss’s Theorem to the gravitational field, as we did
with the electric field, we can derive the gravitational flux.

Again, the divergence theorem states that the volume integral
of a field’s divergence equals the field’s flux through that volume’s
surface. ∫

V

(∇ · ~A)dτ =

∮
S

~A · d~a = Ω ~A

We can calculate the term on the right using a spherical surface:∮
sphere

[
Ao
r2
r̂] · [r2sin(θ) dθ dφ r̂]

= Ao

∮
sin(θ)dθdφ

= Ao

∫ π

0
sin(θ)dθ

∫ 2π

0
dφ

= Ao(2)(2π)

∮
S

~A · d~a = 4πAo = 4π(−G
β
m)

The flux Ω ~A through the sphere is 4πAo regardless of how the
mass inside is distributed, as it only depends on the quantity of
mass enclosed.
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This flux is related to our conventional understanding of gravi-
tational flux Ω~g by the constant β, so

Ω ~A = 4πAo

Ω~g = −4πGm

That Ω~g is proportional to mass doesn’t say much about the
structure of gravity. Rather, it is 4πAo that shows what is actually
going on: gravitational flux is physically comprised of the vector
potential lines that radiate from the mass.

Beware not to confuse either of these fluxes with the scalar su-
perpotential, which is technically the flux of the electric and mag-
netic force fields. While the superpotential ultimately also underlies
the gravitational field, its mathematical relation to gravity is not
identical as with electricity and magnetism; rather it is the vector
potential that plays the analogous role.



Chapter 4

Force-Free Potentials

Potentials can exist without internal distortions that otherwise give
rise to force fields. Because everyday technology utilizes force fields,
force-free potential fields go largely undetected. There are indeed
ways of detecting some potential fields, but these require very spe-
cialized equipment. Quantum mechanical devices like Josephson
junctions must be used to measure the vector potential directly.
Generally, however, potential fields stay hidden from regular test
equipment.

4.1 Potentials without Electric Fields

By setting the electric field equation to zero, we can get an idea of
some hidden potential fields, ones that can piggyback on existing
electric fields or be present where none are evident.

The equation ~E(x, y, z, t) = −∇φ = 0 shows that a scalar po-
tential field φ(x, y, z, t) can be free of forces as long as it has no
gradients. This leaves two possibilities:

φ = φo (voltage is absolute and constant in time and
uniform in space)

φ = φ(t) (voltage is uniform in space but varies with
time)

The first seems insignificant beyond perhaps indicating the funda-
mental “clock speed” of the universe, but the second says that if
the voltage field (electric scalar potential) has no gradients, it can
still change over time and therefore contain a signal that would be

24
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undetectable to most modern instruments. One example would be
the field inside a hollow metal sphere or cage given a pulsed voltage;
the field inside would be uniform in voltage, thus lacking an electric
field, but the voltage would nonetheless pulse with the signal.

t = 0 t=1

The equation ~E = −∂ ~A
∂t = 0 shows that a magnetic vector poten-

tial field remains free of an electric field so long as it stays constant:
~A(x, y, z).

The equation ~E = −∇φ− ∂ ~A
∂t =0 requires that ∇φ = −∂ ~A

∂t which
does not say much, other than that if a voltage gradient coexists
with a time-changing vector potential pointed in the other direction,
their combined electric fields cancel out.

4.2 Potentials without Magnetic Fields

Like in the case of electric fields, by setting the magnetic field equa-
tion to zero we can derive the hidden potential field:

~B(x, y, z, t) = ∇× ~A = 0

Obviously this requires that ~A be curl-free, which implies four pos-
sibilities:

~A = ~Ao (uniform and constant)
~A = ~A(t) (uniform and time-varying)

∇ · ~A(x, y, z) (diverging and constant)

∇ · ~A(x, y, z, t) (diverging and time-varying)

The first specifies a constant vector potential such as one radiated by
a mass, the second creates an electric field, the third creates a grav-
itational potential, and the fourth gives rise to a time-varying grav-
itational potential or in some configurations a gravitational force
field.
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4.3 Potentials without Gravitational Fields

According to ~g(x, y, z, t) = −∇ϕ =0 there are two possibilities for
the gravitational potential to not generate a gravitational force field:

ϕ = ϕo (uniform and constant)

ϕ = ϕ(t) (uniform and time-varying)

These are equivalent to ∇ · ~A(x, y, z) and ∇ · ~A(x, y, z, t), respec-
tively. And this reveals another key, one that shows space-time
can be warped without the associated gravitational forces, just the
gravitational potential.

4.4 Superpotential without Potential Field

The scalar superpotential can exist without associated potential
fields.

Without the magnetic vector potential,

~A(x, y, z, t) = ∇χ = 0

requires that χ = χ(t) or χ = χo, meaning the scalar superpotential
must either be uniform and time varying or uniform and constant.

Without the electric scalar potential,

φ(x, y.z, t) =
∂χ

∂t
= 0

requires that χ = χ(x, y, z), meaning χ must be constant through
time but can change over space.

The scalar superpotential free of all potentials would be one
that is uniform everywhere and constant through time. It would
therefore be the base or absolute value of χ for any given universe.

Depending on how the superpotential is distributed through
space and varies through time, it can give rise to any potential and
any force field. The following summarizes what conditions allow for
what type of fields:

1) χo → no potential, no forces, just the base value (in
units of Webers) for the universe.

2) χ(t)→ uniform or time-varying electric scalar poten-
tial.
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3) χ(x, y, z)→ constant magnetic vector potential, con-
stant gravitational potential, constant gravitational field,
constant magnetic field.

4) χ(x, y, z, t)→ time-varying potentials, magnetic, elec-
tric, and gravitational fields.

The universal ether contains all these distortions:

χuniverse = χ(x, y, z, t) + χ(x, y, z) + χ(t) + χo

4.5 Summary

Aside from the magnetic, electric, and gravitational force fields,
there are plenty other possible distortions of the ether including:

1) uniform and constant χ
2) uniform and time-varying χ
3) uniform and constant φ
4) uniform and time-varying φ
6) uniform and constant ~A
7) non-uniform but constant ~A (for no electric field)
8) curl-free ~A (for no magnetic field)
9) divergence-free ~A (for no gravity field)
10) uniform and constant ∇ · ~A
11) uniform and time-varying ∇ · ~A
These are exotic fields that, if technologically employed, would

allow for time rate alteration, wormhole engineering, time travel,
superluminal communication, antigravity, and free energy from the
harvesting of time flow.
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Gauge Freedom

The baseline value of a potential cannot be detected by standard
instruments, neither will a change in this value always cause a cor-
responding change in the electric or magnetic field. What science
cannot measure absolutely it sets arbitrarily to whatever is most
convenient. This is called setting the gauge. The ability to choose
the gauge freely is called gauge freedom.

One special type of gauge is known as the Coulomb gauge:

∇ · ~A = 0

This is the arbitrary setting of the divergence of the vector potential
to zero, which unbeknownst to modern science is the case where
there is no gravitational potential.

Another gauge comes in response to the question “What changes
can we make to the potentials comprising an electric field without
disturbing that field?” This is known as the Lorentz gauge:

∇ · ~A = − 1

c2
∂φ

∂t

There is a big problem with setting the gauge arbitrarily. That
the base value of something is relative or immeasurable does not
mean it can simply be set subjectively. Maybe the problem is short-
comings in technology and not necessarily the unreality of the po-
tential field. Maybe there is an unacknowledged difference between
one “arbitrary” potential and another. Consider the scalar value
of height; there is no absolute baseline for measuring height and
the only objective measurement would be the difference between
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two heights, but that does not mean at the top of a mountain one
can re-gauge altitude arbitrarily to zero and conclude that condi-
tions there are no different from sea level. With an altimeter that
measures air pressure and with the observation that there is less
oxygen when atop a mountain, it is clear that despite being rela-
tive, the scalar value of height is not subjective. Same goes for the
electromagnetic potentials.

The Coulomb and Lorentz gauges, while conveniently set to keep
magnetic and electric fields isolated from unintended influences of
the potentials, simply state the unique conditions where that iso-
lation exists. The Coulomb gauge sets the divergence of ~A to zero,
signifying the one condition where there is no gravitational potential
and where physics may continue undisturbed by that exotic possi-
bility. Likewise, the Lorentz gauge sets the one condition where
potentials may change in mutually canceling ways without affect-
ing the measurable force fields.

So by employing these gauges, science and engineering unwit-
tingly limit themselves in their experiments and technology to only
those applications where there are no electrogravitic or gravitomag-
netic phenomena. And then they claim there is no proof of such
phenomena, failing to see that their own arbitrary choice of gauges
quarantines them from witnessing such proof in the first place.

Regauging relative values to zero, or pairing them in mutually
canceling opposites, is how exotic phenomena are swept under the
rug. This sleight of hand is the fundamental reason why humans
today are facing an environmental crisis from the use of primitive
energy and transportation technologies.



Chapter 6

Wave Equations

In this chapter we will derive the transverse and longitudinal wave
equations for ~A in vacuum. The transverse case gives rise to elecro-
magnetic waves. The longitudinal case gives rise to electrogravita-
tional waves.

6.1 Derivation from Maxwell’s Equations

First, start with Maxwell’s fourth equation:

∇× ~B =
1

c2
∂ ~E

∂t
Write this in terms of the potentials:

∇×∇× ~A =
1

c2
∂

∂t
(−∇φ− ∂ ~A

∂t
)

The term on the left can be rewritten using a vector identity:

∇(∇ · ~A)−∇2 ~A =
1

c2
∂

∂t
(−∇φ− ∂ ~A

∂t
)

Simplifying:

∇2 ~A−∇(∇ · ~A) =
1

c2
∂

∂t
∇φ+

1

c2
∂2 ~A

∂t2
(1)

Now curl both sides:

∇2(∇× ~A)−∇×∇(∇ · ~A) =
1

c2
∂

∂t
∇×∇φ+

1

c2
∂2

∂t2
(∇× ~A)

30
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Since curl of gradient is zero in this case,

∇2(∇× ~A) =
1

c2
∂2

∂t2
(∇× ~A)

That is the wave equation for ~B:

∇2 ~B =
1

c2
∂2 ~B

∂t2

If we instead uncurl both sides, we get the general wave equation
for ~A:

∇2 ~A =
1

c2
∂2 ~A

∂t2
(2)

Both the electric and magnetic wave equations can be derived
from this. What we visualize as electric and magnetic fields fluc-
tuating into each other while propagating through space as part of
an EM wave, may in actuality be a single magnetic vector potential
wave. In fact, the primacy of the vector potential demands that it be
more “real” than either, with the electric and magnetic components
just being derived abstractions. This is important because one of
the arguments that there is no ether was made on the basis that
magnetic and electric fields can sustain each other while traveling
through a vacuum, but if the real wave is a single vector potential
wave without a supporting partner, then there must be a medium
of propagation. In fact, the vector potential itself being made of
scalar superpotential shows that, ultimately, even transverse EM
waves are naught but ripples in a scalar field, the medium of ether.

6.2 Transverse Waves

The general wave equation for ~A can be rewritten using a vector
identity:

∇(∇ · ~A)−∇× (∇× ~A) =
1

c2
∂2 ~A

∂t2

Notice that the left side has two spatial distortion components,
the first a gradient in divergence and the second a curl of curl (or
curl of magnetic field).

If we choose the Coulomb gauge where ∇ · ~A = 0 then:
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∇× (∇× ~A) = − 1

c2
∂2 ~A

∂t2

∇× ~B =
1

c2
∂ ~E

∂t

Here, the changing electric field produces only a curled magnetic
field. This also happens to be Maxwell’s fourth equation per Oliver
Heaviside’s reformulation, which implicitly contains the Coulomb
gauge. As can clearly be seen, Heaviside purposely eliminated ∇· ~A
from Maxwell’s original work and the rest is history.

6.3 Longitudinal Waves

So let’s look at the case where ~B = 0 and ∇ · ~A 6= 0:

∇(∇ · ~A) =
1

c2
∂2 ~A

∂t2

This is the longitudinal wave equation for ~A. The spatial com-
ponent is entirely gravitational:

~g = − β
c2
∂2 ~A

∂t2

This equation implies that a nonlinear change in ~A produces a
gravitational force. Since ~A is proportional to the electric current
generating it, a nonlinear current change will produce a gravita-
tional force as well. Hence the phenomena of exploding wires and
buckling railguns, whereby nonlinear current pulses produce longi-
tudinal gravitational forces that snap or warp the metal.

In terms of ~E, we finally arrive upon the electrogravitational
field/wave equation:

~g =
β

c2
∂ ~E

∂t

So a changing electric field produces a gravitational field. But
doesn’t Maxwell’s fourth equation say it produces a curled magnetic
field? Well, that depends on the case. Depending on the geometry of
the electric field, it can give rise to ~B or ~g or a mixture of the two. A
long thin metal antenna will radiate mostly electromagnetic waves.
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Meanwhile, a flat metal plate or sphere suppresses the magnetic
field and radiates primarily electrogravitational waves.

C

I

A

A

The mixture of longitudinal to transverse radiation therefore
depends on surface area to edge ratio; more surface area produces
more longitudinal radiation normal to the surface. A long thin
antenna directs only a small amount of longitudinal radiation axially
out the end of the antenna. A flat plate emits only a small amount
of transverse radiation from the plate’s edges, and a sphere from
where the feed wire terminates.

6.4 Displacement Current

Observe that a parallel set of plates will act as reciprocal sender
and receiver of longitudinal waves. This is simply a parallel plate
capacitor. What Maxwell called the displacement current, which is
transfer of electrical energy without transfer of charges, is actually
the transmission of energy via electrogravitational radiation.

The conventional explanation for displacement current is that
∂ ~E/∂t from the first plate creates ∇ × ~B which creates ∂ ~E/∂t on
the second plate. But that cannot always be the case, because a
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spherical capacitor has a negligible magnetic field component due
to the spherical geometry:

E

B

In an ideal situation, the magnetic field lines cancel out com-
pletely, yet the inner sphere still transfers electrical energy to the
outer sphere via displacement current, showing the latter is ac-
complished via electrogravitation. The closest conventional science
comes to this description is in calling it “electrostatic coupling” but
that’s a euphemism that avoids addressing a seeming violation of
Maxwell’s fourth equation. Yes, the electric field is the mediator,
but its dynamic nature and radial or unidirectional geometry makes
it identically a longitudinal magnetic vector potential wave or elec-
trogravitational wave.

To summarize, a longitudinal ~A wave has electric and gravita-
tional aspects, while a transverse wave has electric and magnetic
aspects. When an electric field changes over time without also pro-
ducing a changing magnetic field, it produces a changing gravita-
tional field instead. Energy radiated this way is electrogravitic, and
the transmission of this energy was termed “displacement current”
by Maxwell without his knowing its true nature.

6.5 Electrogravitational Potential

By substituting equation (2) into (1):

1

c2
∂2 ~A

∂t2
−∇(∇ · ~A) =

1

c2
∂

∂t
∇φ+

1

c2
∂2 ~A

∂t2

∇(∇ · ~A) = − 1

c2
∂

∂t
∇φ
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In examining the above, we can see that:

∇ · ~A = − 1

c2
∂φ

∂t

which is the Lorentz gauge, thereby revealed to be implicitly con-
tained within Maxwell’s fourth equation just like the Coulomb gauge
is. As explained previously, the Lorentz gauge is the specific case
where a time-varying electric scalar potential cancels out the diver-
gence of the vector potential, allowing only the curled curl com-
ponent of the magnetic vector potential to survive and produce
the transverse wave. It is another artifice to suppress longitudinal
waves.

So if the Lorentz gauge is chosen such that one side of the equa-
tion is intentionally opposite the other, then in less contrived cases
they are equal rather than opposite:

∇ · ~A =
1

c2
∂φ

∂t

This shows the proper relation between a time varying voltage
and the divergence of the vector potential it produces. Equivalently,

ϕ =
β

c2
∂φ

∂t

So a linearly changing voltage field generates a diverging vec-
tor potential, or equivalently a gravitational potential. Even if the
voltage field were uniform and thus free of ~E, as is the case inside a
hollow metal sphere, there would still be an induced gravitational
potential. If φ varies nonlinearly, say sinusoidally, then ϕ would
also vary sinusoidally.

Thus the gravitational potential inside a conductive chamber
can be manipulated by the voltage signal delivered to its walls.
The sphere or chamber need not be metal; in some applications it
can be Earth and its ionosphere.

6.6 The Nature of Charge

The Maxwell equation also known as the differential form of Gauss’s
Law states:

∇ · ~E =
ρ

εo
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In terms of the magnetic vector potential:

∇ · (−∂
~A

∂t
) =

ρ

εo

∂

∂t
(∇ ·A) = − ρ

εo

∂ϕ

∂t
= − β

εo
ρ

This first implies that if the gravitational potential in a region
varies linearly over time, a corresponding “virtual” charge density ρ
is induced within that region. Second, charges themselves generate
a continually changing gravitational potential.

Since ∇ · ~E = 0 for regions containing no charge, ∂ϕ/∂t is like-
wise null in those regions. In the case of a single electron, the closed
region just to the right of it will have no changing gravitational po-
tential generated by that charge, while the small region containing
it will indeed have one. This would still hold true if the region were
shrunk to the very surface of the electron, if such a thing were pos-
sible. And that says something about the fundamental nature of
charge itself, revealed as follows:

Take the volume integral of both sides:∫
V

∂

∂t
(∇ ·A)dτ =

∫
V

− ρ
εo
dτ

∂

∂t
Ao(t) = − q

εo

G

β

∂

∂t
m(t) =

q

εo

What then is charge? It is mass cycling through time. Positive
charges cycle one way, negative the opposite way. This is further
substantiated by comparing the superpotential field surrounding a
mass compared to that of a charge:
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m !1 !2

q
!2!
! t

!1!
! t

Mass and charge both have concentric equipotential shells, just
that for charges, the χ cycle through time. Thus if you were to place
an electron in a “time vacuum” its charge would become mass, and
likewise if mass were somehow given temporal momentum, it would
become charge.
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Relativity

7.1 Time Dilation

According to General Relativity, the equation for time dilation (slow-
ing of time due to presence of gravity) as a function of distance from
an attracting mass is as follows:

t =
to√

1− 2Gm
rc2

where m is mass, r is radius from the center of mass, and G is the
gravitational constant. The gravitational potential as a function
mass and radius is:

ϕ = −Gm
r

therefore the time dilation equation may be rewritten in terms of
the gravitational potential, and thus as a function of the magnetic
vector potential:

t =
to√

1 + 2ϕ
c2

=
To√

1 + 2β∇· ~A
c2

This implies several things. First, it says that gravity is a time
gradient; as you get closer to an attracting mass like a planet or star,
time slows down for you relative to the rest of the universe because
the gravitational potential is becoming more intensely negative.

Second it implies that a diverging magnetic vector potential (like
that inside a hollow sphere given a voltage signal) will affect the
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time rate, speeding it up if the divergence is positive and slowing it
down if negative. And such a field can be created artificially, thus
the key to using electric, magnetic, or electromagnetic fields to alter
the time rate is to simply create a divergence in the magnetic vector
potential.

Third, by setting the equation to zero, the equations show that
if the gravitational potential is lower than −c2/2 time slows to a
stop. This condition may be found at the event horizon of a black
hole. Beyond this point, time becomes imaginary relative to the
rest of the universe and any matter inhabiting such a zone is severed
from the space-time continuum and ejected into imaginary space.
According to Relativity, that would set the portal condition for the
gravitational potential:

ϕp < −
c2

2

From imaginary space one can enter the universe again, but not
necessarily this universe. In other words, by lowering a uniform
gravitational potential beneath −c2/2 one can tear open a portal
into other dimensions, establishing a singularity like a black hole
minus the destructive gravitational forces. This can be done elec-
tromagnetically.

7.2 Ambient Gravitational Potential

The gravitational potential energy of an object is a product of its
mass and the local gravitational potential.

EP = mϕ = m(−GM
r

)

For an object suspended over the surface of a planet, the higher
the object, the greater (more positive) its potential energy. This
function starts negative and asymptotically approaches zero.

Between earth and moon exists a gravitational null point where
the attracting force of each body cancels the other. An object lo-
cated at that point will experience no forces, however the gravi-
tational potential is still nonzero, for it could fall either way and
release its potential energy as kinetic energy by the time it hits the
ground. If the energy is nonzero, then so is its gravitational poten-
tial. What is the value of gravitational potential at the null point?
Merely the sum of potentials from both attracting masses.
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It stands to reason that if a null point is surrounded by a spher-
ical distribution of masses, its potential energy will be a function
of their combined mass. We can extend this principle to the uni-
verse as a whole and define the ambient gravitational potential ϕa
to be the sum contributions of potentials from all other masses in
the universe:

ϕa =

n∑
i=1

−Gmi

ri

Because it is mass surrounding a point, rather than a point some
distance from the center of mass, the potential is positive instead
of negative. Stated in terms of mass density and integrals:

ϕa = Gρm

∫ R

0
r dr

∫ π

0
sinφ dφ

∫ 2π

0
dθ

where ρm is the average density of the universe and R the radius of
the universe. This equation is only an approximation that assumes
uniform spherical mass distribution.

Published values for density and radius vary as follows:

ρm = 4.5× 10−26 → 18× 10−26
kg

m3

R = 1.3× 1026 → 4.34× 1026m

Plugging these into the integral produces the following range for
the ambient potential:

ϕa = 3.16× 1016 → 142× 1016
m2

s2

Compare with the portal condition:

ϕp < −
c2

2
= −4.49× 1016

m2

s2

Interestingly, these are both within the same order of magnitude.
Could they be equal and opposite?

ϕa + ϕp = 0

Since the ambient potential is positive, the local potential rep-
resents a subtraction from this field. Such a subtraction results in
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a slowing of time. When the subtraction equals the ambient value,
time slows to zero and the portal threshold is reached. This means
the ambient potential sets the default time rate.

Since the ambient potential, which comes from the gravitational
potential fields of masses in the universe, is solely a function of the
speed of light, it follows that in a less massive universe with a lesser
ambient potential, the speed of light is also lower. Thus the speed of
light is set by the ambient potential, or equally by the distribution
of matter in the universe.

Matter itself is responsible for establishing the boundary con-
ditions of this universe. Without matter, there would neither be
space nor time, nor velocity of light. In short, without matter the
physical universe would not exist. There is no such thing as an
empty universe consisting of flat space-time unoccupied by matter.

7.3 Mach’s Principle

Ernst Mach (1838 - 1916) reasoned that mass is meaningless in an
empty universe. Mach proposed that inertia, the resistance of mass
to changes in motion, is not a fundamental property of that mass
alone, but something that depends on its relationship to all other
masses in the universe. Einstein coined this “Mach’s Principle”.
Modern physics has never been able to explain why inertia should
depend on matter in the rest of the universe.

Although Relativity discusses motion being relative to the ob-
server, inertial resistance to changes in motion is not relative and
does not depend on the observer at all, and that is what intrigued
Einstein. For example, when mass is forced to move into a circular
pathway, it will resist that force and pull outward against it. That
is why stirred tea presses outward and up the inner wall of a mug.
But the tea will do this regardless of whether you stand still, spin
around, or run past the mug.

Such inertial effects must therefore be independent of the ob-
server. Mach argued that the motion leading to such effects must
be measured relative to something absolute, and that absolute is
the fixed background of stars in the sky. When something spins,
it spins relative to the stars. When something accelerates, it accel-
erates relative to the stars. Somehow masses far away affect how
mass behaves right here. This was Mach’s line of reasoning.
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That is a big problem because how can local and distant masses
possibly interact over such a vast range of space, and how would
this interaction create inertia? No one has solved this problem.

But with the postulate that gravitational potential is divergence
of the vector potential, the problem can indeed be solved.

7.4 Uniform Velocity

Let’s examine what happens during uniform linear motion through
the ambient gravitational potential. We will be using the wave
equations for the scalar superpotential:

1

β
ϕ = ∇ · ~A = ∇2χ =

1

c2
∂2χ

∂t2

The wave equation links motion through the ambient gravita-
tional potential with the alteration of potential for that mass.

Consider a mass moving with constant speed and direction through
the ambient gravitational potential of the universe. This field fun-
damentally consists of scalar superpotential varying over space, and
may be written out mathematically as a function of position x:

∇ · ~A =
d2χ

dx2
=
ϕa
β

Solving for χ:

χ(x) =
1

2

ϕa
β
x2 + C1x+ C2

We may set the constants to zero.

χ(x) =
1

2

ϕa
β
x2

With this in mind, consider how motion through space causes
the superpotential to vary over time for the traveling mass. It is
like mile markers showing different values at different distances, and
thus the observed marker showing different values at different times
on a road trip. To find this rate of change, we differentiate the
above equation twice with respect to time:

dχ

dt
=

1

2

ϕa
β

(2x
dx

dt
)
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d2χ

dt2
=
ϕa
β

[x
d2x

dt2
+ (

dx

dt
)2]

d2χ

dt2
=
ϕa
β

(x a) +
ϕa
β
v2

Since the velocity is steady, there is no acceleration and the first
term on the right is zero. Then we are left with:

d2χ

dt2
=
ϕa
β
v2

This is a wave equation representing a newly generated gravi-
tational potential due to velocity. Because this new potential is in
the frame of reference of the moving mass itself, a minus sign must
be affixed to switch back to the stationary reference frame where
the ambient potential ϕa resides so that the new potential ϕl can
be properly compared to it:

ϕl =
1

β

d2χl
dx2

= − 1

β

d2χ

dx2

Combining this with the previous equation, we find that:

ϕl = (−v
2

c2
)ϕa

What an interesting result! The new gravitational potential is
a function of velocity. It is simply the ambient potential times the
squared ratio between velocity and speed of light. For the moving
mass, the total potential ϕT at any point would be the sum of local
and ambient values:

ϕT = ϕl + ϕa

ϕT = ϕa(1−
v2

c2
)

At zero velocity, the total potential just equals the ambient. For
two moving masses, if both have the same velocity then there will
be zero difference in potential between them and each will appear to
the other as being situated in the same ambient potential, thus the
same reference frame. This is in accordance with Special Relativity
where all that counts is the relative velocity between two observers.
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The new potential may be written more simply if we substitute
the actual value of ambient potential into the equation:

ϕl = −v
2

c2
(
1

2
c2) = −1

2
v2

Except for the minus sign, which is a matter of convention and
perspective, this is the kinetic energy equation without the mass
variable. It is a kind of “kinetic potential” structurally identical to
gravitational potential at the superpotential level. Kinetic energy
EK is therefore a gravitational potential energy induced via motion
through the ambient potential.

EK =
1

2
mv2 = −mv

2

c2
ϕa

Einstein’s famous equation could then read E = 2mϕa to indi-
cate the intrinsic energy of matter is twice the ambient gravitational
potential energy.

7.5 Time Dilation and Scale Contraction

Time dilation and length contraction of Special Relativity then
come down to the ratio between local and ambient gravitational
potentials:

t =
to√

1− v2

c2

=
to√

1 + ϕl
ϕa

l = lo

√
1− v2

c2
= lo

√
1 +

ϕl
ϕa

Due to uniform linear motion, here ∇ · ~A creates a linear com-
pression or rarefaction in the superpotential, hence length contracts
in only one dimension. However, since ∇ · ~A can just as well com-
press in a radial manner, it is possible to have scale contraction as
well. It would theoretically be possible to shrink objects and spaces,
even pack more volume into a container than is apparent from the
outside.
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7.6 Acceleration and Inertia

For mass accelerating in a straight line, each moment in time and
position in space comes with its own velocity, and thus its own
gravitational potential. So there will be a different ϕl for different
values of x. This comprises a gradient, which in turn generates a
gravitational force field.

We can take the “kinetic potential” equation and rewrite the
velocity variable in terms of acceleration and position:

ϕl = −1

2
v2

ϕl = −1

2
(
√

2xa)2

ϕl = −xa

Then to get the gravitational field experienced by a moving mass
due to its acceleration, we change signs (multiply by -1) to switch
reference frames back to the moving mass and take the gradient or
spatial derivative of this local gravitational potential:

~g = −∇ · [(−1)ϕl] = − d

dx
(xa)x̂

~g = −~a

As you can see, the induced gravitational field is equal and oppo-
site the acceleration. An accelerating mass will experience a back-
ward pull proportional to the rate of acceleration, which is identi-
cally the property of inertia. The force of this pull is equal to the
gravitational force field times the mass, per Newton’s Second Law,
whereby the force needed to accelerate an object is:

~F = ma

Gravity and acceleration produce identical local scalar superpo-
tential distortions, and that is the reason behind Einstein’s Equiva-
lence Principle. Note, however, that altering ϕl electromagnetically
would break the equivalence.
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7.7 Circular Motion

In the case of rotation or mass moving around a circular path, each
point along the radius of curvature has a different tangential velocity
and thus a different local gravitational potential.

Tangential velocity is a function of angular velocity ω and radius
r, and these can be plugged into the kinetic potential equation and
differentiated with respect to radial position to get the gravitational
field produced by circular motion:

v = ωr

ϕl = −1

2
ω2r2

~g = −∇ · [(−1)ϕl] =
1

2

d

dr
(ω2r2)

~g = ω2r = (
v2

r2
)r =

v2

r

~F =
mv2

r

This indicates that the force needed to keep a mass moving
along a curved path is a function of its mass, tangential velocity,
and radius. This is the standard physics equation for centripetal or
centrifugal force, except I have derived it by examining the conse-
quences of motion through an ambient gravitational potential field,
which exists only because matter elsewhere in the universe is gen-
erating it, as per Mach’s Principle. Centripetal force appears to
be a gravitational force exerted on a mass due to kinetic potentials
arising along its motion’s radius of curvature.

7.8 Conclusion

Every mass has a gravitational field, but whereas the force fields
from all masses in the universe cancel each other out, the gravita-
tional potentials do not. So the combined potential fields from all
masses in the universe create an ambient potential throughout the
universe. Therefore all masses are immersed in the gravitational
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potential of all other masses. The interaction between a mass and
this ambient field is what leads to inertial effects.

Moving with constant speed and direction does nothing but
change the locally experienced value of total gravitational poten-
tial. Each velocity comes with its own value of potential. This has
the effect of dilating time and contracting length relative to slower
moving or stationary observers, as predicted by Special Relativity.

Accelerating through this field creates a compression of the field
in front of the mass and expansion in the back. The accelerating
mass then exists within a field gradient, meaning a gravitational
potential that is no longer uniform. This creates a gravitational
force field pointing opposite the direction of motion. That causes
the mass to resist acceleration, which is the basic inertial property
of mass.

As for circular movement and centrifugal force, note that each
distance from the center of curvature has a different velocity. Con-
sider a spinning disk: the edge is moving faster than points closer to
the center. Since with each velocity comes a different gravitational
potential, a gradient in the gravitational potential exists between
center and edge of the disk. Therefore, circular motion creates a
local gravitational force field pulling outward and away from the
center. And that is centrifugal force, another byproduct of inertial
resistance to changes in motion.

All these inertial phenomena ultimately depend on masses in the
rest of the universe, as stated in Mach’s Principle, because it is the
combined gravitational potential of these that leads to resistance to
changes of motion by individual masses.

With the postulate that the gravitational potential is the diver-
gence in the vector potential, that all masses in the universe create
an ambient potential, and the wave equation for the scalar superpo-
tential, in the end I have derived the Equivalence Principle, Mach’s
Principle, and Newton’s First and Second Laws.

END
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