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INTRODUCTION

The first step toward understanding the aural interpre-
tation of a musical sound is the determination of the physi-
cal nature of the sound itself. To be heard as musical
sound, it is essential for vibrations in the air to exhibit
at least an element or an approximation of periodicity. The
simplest form of periodic vibration is sinusoidal (or simple
harmonic) motion, and the sound it makes is called a pure or
a simple tone. Most musical tones result from complex forms
of vibration that are analyzable, both physically and aural-
ly, in terms of sinusoidal components. Harmonic intervals,
being made up of musical tones, are likewise analyzable; and
this kind of analysis is regarded here as potentially signi-
ficant for the theory of harmony.

However, it is known that the ear distorts or trans-
forms the vibrations it receives from the air; and, since
sounds are normally heard thru the ear, an analytic study of
harmonic intervals must take into consideration the vibra-
tional pattern that the sound assumes in the ear as well as
the form it has in the air. The vibrational pattern that an
interval assumes in the ear, like that in the air, can be
analyzed in terms of sinusoidal components; and these compo-

nents (or tones) make up what is called here the aural spec-—

trum of an interval. This, then, is the analytic version of
an interval that is studied here in an effort to discover
principles of importance to the theory of harmony.

The presence or absence in an interval of the beats
that result when two or more tones of the spectrum approach
unison are considered here as profoundly affecting a musi-
cian's judgment of the interval. Only those intervals can

be easily and accurately tuned by ear that are determined by
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Introduction

the coincidence of spectral tones and, hence, by the elimi-

nation of beats. These are called here the discernible in-

tervals, and other intervals are interpreted as approxima-
tions, tunings, or mistunings of these.

The aural spectrum of a discernible interval falls ac-
cording to the frequency ratios of the partials of a complex
tone and thereby constitutes a veritable "third tone'" that
is related in frequency to the two tones of the interval as
fundamental to partials. Thus the aural spectrum gives the
interval a characteristic sound that is determined by its
frequency ratio and, being detected by the musician's ear,
plays a major role in the recognition and use of the inter-
val.

The complete set of discernible intervals consists of ;
thirty-two or possibly forty intervals ranging in size from
unison to a little less than four octaves and distributed
almost evenly within this range so that any interval smaller
. than four octaves can be said to approximate a discernible
interval. The beats that are heard in an approximation of a
discernible interval give the approximation a quality of
roughness or dissonance, and the discernible interval is
said to disturb the approximation. When the difference be-
tween consecutive discernible intervals is small enough,
these intervals actually disturb each other. In such a case,
the more discernible interval is the more disturbing to the
less discernible interval; and, as a consequence, the less
discernible one is the more dissonant. Mistuned and disso-
nant intervals are usually avoided or at least used
judiciously.

A study of this nature necessarily draws heavily on
findings in the fields of acoustics, hearing, and psychology

of music as well as theory and history of music. The author

iv
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has also made extensive use of mathematics, which is now
incorporated into the text rather than being relegated to
appendixes as it was in his dissertation. The earlier work,
being more exploratory in nature and somewhat broader in
scope, devoted a chapter to the subject of chords; whereas
this book, being more intensive and critical, confines its
attention to intervals. As might be expected, then, the
approaches and conclusions of the present work, insofar as

they differ from those of the earlier writing, are preferred.

Chester D. Mann
Advent 1989



CONTENTS

Tones ard intervals

Pitch and frequency

Addition, subtraction, and measurement of intervals
Timbre and partials

The acoustic spectrum of an interval

Periodic motion

Loudness and intensity

Phase relations in complex tones

Vibrato: periodic pulsation

moOHEBDQWE

The audible phenomena of harmonic intervals

Interference: basic formulation

Interference: beats

Modulation

Aural harmonics and combination tones

Aural responses to complex tones

Loudness profile of the typical aural spectrum
Masking

OHdEBgoQwe

The aural spectra of commensurable intervals

Fundamental aspects

The loudness index

Pairs of spectral tones

The indexes of coinciding spectral tones
Minimum-index tones

Significant tones of the aural spectrum
Primary coincidences

Coincidence of significant spectral tones
The basic range

Discernible intervals

The 'third tone"

RuyHDQOHEEOOQO®>

vi

38

38
45
53
56
62
67
70

72

72
76

79

83
90
97
106
111
113
116
118



Contents

4. The interpretation of intervals

Interrelating commensurable intervals

Choosing coordinates when x° and y° are not given
Conjoint intervals

The aural interpretation of indiscernible intervals

Beats and the point of division
Nuclei

Recognizability of tunings
Pseudo nuclei

Accuracy of tunings
Acceptability of tunings
Consonance and dissonance

Na-HTDOHE Qe

Bibliography
Index of symbols
Index of figures, tables, and plots

Subject index

vii

123

123
127
133

138
142
148
152
159
163
165
172

188
191
194

195






Chapter 1

TONES AND INTERVALS

The individual tone is the commonly recognized unit of
the musical complex. The reasons for this appear to be
partly physical and partly (perhaps to a lesser extent)
psychological. The voice and the various musical instru-
ments cannot produce less than a single tone, and the
listener intuitively perceives it as an indivisible whole.
Yet it is a complex unit with various clearly recognizable
attributes. The principal attributes recognized by
musicians are heard as being pitch, quality, loudness (or
softness), and duration. Quality embraces both timbre and
vibrato. Other attributes, such as volume and density, are
recognized by some; but they can be related to the
principal ones Jjust named.

Most musicians judge the pitch of a tone with ease and
precision only in relation to that of another tone. 1In
other words, our appreciation of pitch begins with the com-
parison of one tone with another. If two tones have the
same pitch, we may say that they coincide; if they have
different pitches, we say one is higher and the other is
lower. Not only can we identify one tone as being higher
or lower than another, but we can also identify definite
pitch relationships between tones. These pitch relation-
ships are called intervals, but the term interval embraces
not only the relationship of the pitches but also the two
tones that are sounded to produce the interval. Thus, we
distinguish between intervals in which the tones are
sounded together and those in which the tones are sounded
in succession.

An interval in which the tones are sounded together is
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called a harmonic interval; one in which the tones occur in
succession is known as a melodic interval. This study is
concerned with harmonic intervals, in which there is not
only a pitch relationship but also a certain sound (or
sonority) that is not present in a melodic interval. The
author believes that this phenomenon present in harmonic
intervals has been a strong shaping force in the develop-
ment of our polyphonic and homophonic music. As such, it

deserves careful analysis.

A, Pitch and Frequency

In making judgments regarding intervals, musicians
have been guided principally but not entirely by their
sense of hearing. Musical instruments and even specially
constructed experimental instruments have contributed to
the musician's concepts regarding pitch relationships.
Thus, the octave is not defined as merely a certain sensa-
tion of pitch relationship but is also considered as a
relationship produced by a certain kind of mechanical
manipulation of a tone-producing instrument. The ancient
Greeks related musical intervals to the ratios of frac-
tional parts of a vibrating string, half a string producing
a tone an octave higher than the whole string, two thirds
resulting in the fifth above, and so forth.

Galileo (1564-1642) was one of the first authors
generally known to relate the size of a musical interval
directly to the ratio of the frequencies of the two tones.
He stated:

. I assert that the ratio of a musical interval
is not immediately determined either by the length,
size, or tension of the strings but rather by the
ratio of their frequencies, that is, by the number
of pulses of air waves which strike the tympanum of
the ear, causing it also to vibrate with the same
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Figure 1. The musical intervals corresponding to certain

frequency ratios.

frequency.l
He specifically pointed out that the ratio of the frequen-
cies of the octave is 2/1; of the fifth, 3/2; and of the
fourth, 4/3. We observe that the ratio of the frequencies
of a given interval is the reciprocal of the ratio of the
lengths of the fractional parts of a string that will pro-
duce the interval. Thus, the fourth higher has 4/3 the
frequency but only 3/4 the string length of the tone pro-
duced by the whole string. The musical intervals corre-
sponding to certain frequency ratios are shown in Figure 1.

It appears that Galileo must share the honor of the
above discovery with Mersenne (1588-1648), who even went so
far as to determine frequencies of tones in terms of cycles
per second.2 Thus we find pitch understood to be related
to frequency early in the seventeenth century: a greater fre-
quency being heard as a higher pitch; a lesser frequency,
as a lower pitch; and equal ratios of frequency being

recognized as equal differences in pitch.

1. Galileo Galilei, Dialogues Concerning Two New Sciences,
p. 103 of the English edition by H. Crew and A. de Salvio.
The original edition was published in 1638.

2. Dayton C. Miller, Anecdotal History of the Science of
Sound, pp. 13-14. Marin Mersenne published an extended
treatise on sound and music, Harmonie Universelle,in 1636.
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Recent investigations have shown that under certain
conditions pitch is not controlled solely by frequency,;
other factors that affect the perceived pitch of a tone are

3 The diver-

intensity, timbre, duration, and inflection.
gence between pitch and frequency is found to be much
greater in many of the psychological studies than it is in
musical performance.4 Experimental procedures which might
account for the discrepancies reported include the follow-
ing: use of pure tones instead of complex tones such as are
produced by musical instruments and the human voice, use of
intervals and descriptive terminology not recognized in
music, exclusive use of melodic rather than harmonic inter-
vals, use of glides instead of steps or leaps, having the
subject manipulate apparatus for the production of tone
with which he is unfamiliar, use of extreme ranges, and
finally the use of nonmusicians and even subjects with poor
pitch perception. The elimination of such conditions tends
greatly to decrease the extent to which factors other than
frequency affect the recognized pitch of ‘a tone.

The term pitch will be used hereafter according to the
meaning it has under the conditions of musical experience:
complex rather than pure tones, intervals that are recog-
nized or recognizable as possessing distinctive musical
qualities, harmonic as well as melodic tonal relationships,
discrete instead of continuous pitch changes (at least
approximately so), reasonably skilled manipulation of tone
production, moderate range, and good pitch perception (a

"musical ear'"). Under these conditions, the influence of

3. Don Lewis, "Pitch: Its Definition and Physical Determi-
nants,'" University of Iowa Studies in the Psychology of
Music, vol. 4 (1937), p. 346f.

4. Stevens and Davis, Hearing, pp. 75-76.
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factors other than frequency ratios on pitch relationships
is practically negligible.
The present standard of pitch in the United States 1is

440 cps (cycles per second) for the A in the middle octave

of the piano. On this basis, the lowest A of the piano has
a frequency of 27.5 cps, coming within approximately a per-
fect fifth of the lower limit for the perception of pitch;
and the highest C has a frequency of 4186 cps in equal tem-
perament, about two octaves below the highest audible fre-

quency.

B. Addition, Subtraction, and Measurement of Intervals

Two intervals may be added by making the lower tone of
one coincide with the higher tone of the other; then the
sum is the interval formed by the other two tones -- the
ones that do not coincide. In other words, the sum of two
intervals is the interval composed of the lower tone of one
and the higher tone of the other when their other tones co-
incide. The difference between two intervals is the inter-
val formed by the higher tones of the intervals when their
lower tones coincide or by the lower tones of the intervals
when their higher tones coincide.

Application of these definitions yields the rules .that
the frequency ratio of the sum of two intervals equals the
product of their frequency ratios and that the frequency
ratio of the difference between two intervals equals the
frequency ratio of the larger interval divided by that of
the smaller interval. Thus, addition of a major third
(with ratio 5/4) and a minor third (with ratio 6/5) results
in a perfect fifth, whose frequency ratio (3/2) equals the
product of 5/4 and 6/5. Subtraction of a perfect fourth

(4/3) from a perfect fifth (3/2) results in a major second.



6 Ch. 1

whose frequency ratio (9/8) equals the quotient (3/2)/(4/3).
Subtraction of a minor third (6/5) from a perfect fourth
(4/3) gives another major second (10/9), which is smaller
than 9/8.

The difference between these two major seconds is the
syntonic comma (81/80). When several intervals of the same
name differ by relatively small intervals like this, they
are said to differ in tuning or intonation. For example,
the major thirds 5/4 and 81/64 differ by a syntonic comma,
and 5/4 is said to be in just intonation, whereas 81/64 is
in Pythagorean tuning. The addition and subtraction of
intervals leads to different tunings for all of the inter-
vals of the diatonic scale. Are all of the tunings of any
one interval equally good? If not, which is best, and how
bad are the others? Answers to these questions are offered
in subsequent pages of this study.

The difference between the pitches of the two tones of
an interval is the size of the interval. The addition of
two intervals of the same size results in an interval of
twice the size, adding an interval to another twice its
size results in an interval thrice its size, and so forth.
Thus, the relative sizes of the major second, the major
third, and the augmented fourth are fittingly expressed by
the words tone (whole step), ditone (two steps), and tri-
tone (three steps) that come to us from the Middle Ages.

Let some interval be chosen as a unit interval for the
measurement of other intervals, and let its frequency ratio
be R. Then the sum of s intervals of unit size is an inter-
val of size s and frequency ratio RS, If x and y are the
respective frequencies of the higher and lower tones of the
interval of size s, then its frequency ratio 1is x/y, and
its size and frequency ratio are interrelated precisely

by the formula
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Xx/y = RS Bl
whence S
R = Ax/y B2
and
- log (x/y)
S log R B3

Choosing the equally tempered semitone as our unit
interval, we find, inasmuch as the octave contains twelve

semitones and has the frequency ratio 2/1, that s = 12 when

x/y = 2. Substitution of these values into B2 results in
R = ~N¥2 = 1.059463 B4

The natural logarithm of R, designated by 1ln R, is
.0577623; this and B3 together give us

s = 17.31234 1n (x/y) B5

as the size in semitones of any given interval.

The cent, which Alexander J. Ellis introduced over a
hundred years ago, is one hundredth of a semitone. Both
units are used in this study. For example, the size of the
pure perfect fifth (x/y = 3/2) is 7.02 semitones or 702
cents. There follows a tabulation of the frequency ratios
and sizes of eight curious little intervals that were dis-
covered long ago by taking differences between other,

larger intervals:

Name of interval Freq. ratio Size in cents
Pythagorean chromatic semitone 2187/2048 113.685
Just diatonic semitone 16/15 111.731
Pythagorean diatonic semitone 256/243 90.225
Just chromatic semitone 25/24 70.672
Diesis (the wolf) 128/125 41.059
Ditonic (or Pythagorean) comma 531441/524288 23.460
Syntonic comma 81/80 21.506

Schisma 32805/32768 1.954
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C. Timbre and Partials

Mersenne made also another observation that is impor-
tant to musical theory. He said:

. every string produces five or more different
sounds at the same instant, the strongest of which
is called the natural sound of the string, and alone
is accustomed to be taken notice of, for the others
are so feeble that they are only perceptible by
delicate ears. . . Not only the octave and 15th, but
also the 12th and major 17th, are always heard; and
over and above these I have perceived the major 23rd
about the end of the natural sound.®

This was about the first intimation that a musical tone
has component parts, and that these parts partake of the
nature commonly ascribed to the complete tone and stand in
fixed intervallic relationships to each other. These parts

are now called partial tones, or simply partials, the one

whose frequency corresponds to that of the complete tone

being called the first partial or fundamental, and the

others being called upper partials because thay are higher

in pitch. The upper partials of a musical tone are harmonic.
This means that the second partial (octave higher) has a
frequency twice that of the fundamental; the third partial
(twelfth higher), three times that of the fundamental; the
fourth partial, four times; and so forth. Some of the par-
tials of the tone C are shown in Figure 2 as they are best
approximated in the Western musical scale.

Being identical in frequency to the harmonics of a
string or pipe, the upper partials are often called har-
monics, and the sequence of their frequencies is known as

the harmonic series. A string produces harmonics by vibrat-

ing not only as a whole but also in halves, thirds, fourths,

fifths, and so forth. This may explain why the series with

5. William Pole, The Philosophy of Music, p. 41.




Figure 2. Some of the partials of the tone C as they
are best approximated in our musical scale. The num-
bers show the frequency ratios of the partials to the
fundamental and, of course, to each other.

the terms 1, 1/2, 1/3, 1/4, 1/5, . . . is identified in
calculus textbooks as the harmonic series. For us, how-
ever, the frequency ratios of the harmonics, not their man-
ner of production, are of interest; therefore, any series
of frequencies with the relative values 1, 2, 3, 4, 95,
is identified here as the harmonic series.

Ohm (1789-1854) formulated in 1843 a more comprehen-

sive and exact notion of this aspect of the musical tone.6

Miller calls it a '"Law of Acoustics'" and states it thus:

This law states that all musical tones are
periodic functions; that the ear perceives pen-
dular vibrations alone as simple tones; that all
varieties of tone quality are due to particular
combinations of a larger or smaller number of
simple tones of commensurable frequencies; and
that a complex musical tone or a composite mass
of musical tones is capable of being analyzed
into a sum of simple tones each of which may be
separately heard by the ear.?

6. Georg S. Ohm, "Ueber die Definition des Tones, nebst
daran geknlipfter Theorie der Sirene und &hnlicher ton-
bildender Vorrichtungen,'" Annalen der Physik und Chemie,
Ser. 2, vol. 59 (1843), pp. 513-565.

7. Dayton C. Miller, Anecdotal History of the Science of
Sound, pp. 60-61.
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A simple tone is the same as a pure tone and cannot be
separated into several tones of different frequencies; it
presents only one frequency to a listener. The partials of
a complex tone are simple tones. The composition of a musi-
cal tone as regards the presence and relative intensities of

the partials is known as its overtone structure, the term

overtone being synonymous with upper partial. A certain
aspect of Ohm's law, namely, the relationship of the over-
tone structure of a tone to its timbre, was the subject of
extended experimental investigations by Helmholtz (1821-
1894)8 and Miller.9 They found that most musical tones
could be broken down into component partials with harmoni-
cally related frequencies and that timbre was very definite-
ly related to overtone structure.

Ordinarily the partials of a tone are not perceived
separately but are rather heard as factors controlling the
timbre of a tone whose pitch is identified with that of the
fundamental. Nevertheless, it is possible for the ear to
pick out the individual partials of a complex tone, espe-
cially if a guide tone is sounded for a moment at the fre-
quency of the partial to be heard. Even the elemental
nature of a simple tone is not directly apparent to most
listeners; they are aware of its being a simple tone through
recognition of a timbre or tone quality that has been demon-—
strated to them as being that of a pure tone.

Table I shows the overtone structures of musical tones

produced by a male voice singing gg,lo and by a violin,11 a

8. Hermann L.F. Helmholtz, Sensations of Tone, Part I.
9. Dayton C. Miller, The Science of Musical Sounds, 1926.

10. After Barrett Stout, "The Harmonic Structure of Vowels
in Singing in Relation to Pitch and Intensity," The Journal
of the Acoustical Society of America, vol. 10 (1938), pp.
137-146.
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Table I
Overtone Structures of Musical Tones

11

The partials of the tones are listed in the columns beneath the pitches

at heights corresponding to the scale of intensity levels at the left.
Two or three partials of the same intensity are separated by commas.

Inten- Male voice Violin Clarinet French horn
sity singing ah
levels
in db 3D 4A 4D asb 5C 6C# 4Bb 5D 6E 2D 4A 5D
4
2 1
55
1
3
5 3
50
1 1
1
4 1
45 5
12 1
2 11
1 13
4 3 2
40 1,2,8 2
3
6 2,6 6
5
4
35 6 16 10
3 9 5 3
17 1 3
7,25 13 4 2 5
26 7,12} 5,6 8 2 1
30 15 7 2 3
23,24 8,14
22 3,10 5
9 18 8 9
21 7,13 5 4 2
25 18,19 7 8 B8
27 9,11
9,10 12 3 4 7
10 | 11,19 7 6
14 4 4
20 20 7,13 8
15 14 6 3
19 12 15 9 3
12 20 17 10 8 2
17 13,18 8 6 13 7
15 13,28 9 17
14 5 11 5 1
16 10
11,15 14
30 15
10 29 10,11 8
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clarinet,12 and a French horn.12 A number before the letter
name of a pitch indicates its octave from left to right on
the piano keyboard. Each octave starts with A, not C. Thus
middle C is designated as 4C, and the major sixth above mid-
dle C is 5A. The tones of the voice were roughly character-
ized as loud; those of the instruments, as rather soft. It
can be seen that the relative intensities of the partials
are the all-important determinant of the timbres of individ-
ual tones. The fundamental is not necessarily the strongest
partial; neither does every tone of the same voice or
instrument have the same overtone structure. In general,
the lower tones have less of their strength in the lower
partials, whereas the reverse is true of the higher tones of
the same instrument.

That musical tones have upper partials which originate
in the manner of vibration of the tone-producing mechanism
is well known, but that partials may be heard which do not
exist outside the organism of the listener is also true.
Helmholtz was probably the first to speak of such. He said:

Since the human ear easily produces combina-
tional tones, for which the principal causes lying
in the construction of that organ have just been
assigned, it must also form upper partials for
powerful simple tones, as is the case for tuning-
forks and the masses of air which they excite in
the observations described. Hence we cannot
easily have the sensation of a powerful simple
tone, without having also the sensation of its
harmonic upper partials.13

11. F.A. Saunders, ''The Mechanical Action of Violins," The
Journal of the Acoustical Society of America, vol. 9 (1937),
pp. 81-98.

12. F.A. Saunders, "Analyses of the Tones of a Few Wind
Instruments,'" The Journal of the Acoustical Society of
America, vol. 18 (1946), pp. 395-401.

13. H.L.F. Helmholtz, Sensations of Tone, p. 159.




Sec. D 13

These '"upper partials'' that are generated within the ear are

now generally known as aural harmonics and, in accord with

Helmholtz' explanation, are thought to arise in the nonline-
ar response of the auditory mechanism.

A similar phenomenon is the fact that the ear hears the
pitch of a complex tone as being that of the fundamental
even when the fundamental is comparatively weak or missing
altogether.14 This is perhaps best described as a dual phe-
nomencon the two aspects of which present the same frequency
to the listener. 1In the first aspect, a strong enough com-
plex tone without fundamental generates within the ear dif-
ference tones of the same frequency as the fundamental. 1In
the second aspect, the frequency (that is, the repetition
rate) of this acoustic stimulus actually is that of the

fundamental.

D. The Acoustic Spectrum of an Interval

Inasmuch as a harmonic interval consists of two tones
sounded together and each tone consists of a number of par-
tials, it follows that a harmonic interval embraces in its
physical nature an assemblage of partials standing in
various relationships to each other. This assemblage of
partials is referred to here as the acoustic spectrum of an
interval. Figure 3 represents a portion of the acoustic
spectrum of a continuum of intervals from the unison to one
that is infinitely large. In this figure, the ordinates
measure frequency; the abscissas, points along the contipu-

um, a larger abscissa corresponding to a larger interval.

b

The frequencies of the respective partials of the higher

tone are represented by x, 2x, 3x, 4x, and so forth; those

14, Stevens and Davis, Hearing, p. 99; C.E. Seashore, Psy-
chology of Music, pp. 68-74; and J.V. Tobias, Foundations of
Modern Auditory Theory, Vol. I, Chapter 1, "Periodicity
Pitch,'" by Arnold M. Small.
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of the lower tone, by y, 2y, 3y, 4y, and so forth. The
higher tone remains at the same frequency throughout,
whereas the lower tone is at a lower frequency at each suc-
cessive point in the continuum, starting at the same fre-
quency as the higher tone and vanishing at the end. By
showing only the first six partials in this figure, the
writer does not mean to imply that there are none higher; he
is rather of the opinion that a practical theory of music
will regard every musical tone as if it contained at least
six partials.

The spectrum of any particular interval lies along the
vertical line that stands at the position of that interval
in the continuum. The spectrum of the unison lies along the
vertical line at the extreme left of the figure and is com-
posed of the frequencies 120, 240, 360, 480, and so forth;
its frequency ratio, 1/1, is marked at the bottom of the
figure directly underneath its spectrum; and coinciding par-
tials are pointed out by the vertical dashes above and below
each coincidence. The spectrum of the perfect fifth (ratio
3/2) lies along the vertical line that intersects y at the
point where y equals 80, and consists of the frequencies 80,
120, 160, 240, 320, 360, 400, 480, and so forth. The coin-
cidence of partials is indicated as before.

The ratios of the frequencies of intervals in which
partials are seen to coincide are marked along the axis of
abscissas. These intervals are shown in musical notation in
Figure 4. Musicians will immediately recognize these as fa-
miliar musical intervals in just intonation. The author
holds the view that these are commonly recognized largely
because of the coincidence of lower partials. If this is

so, the inclusion of more partials in Figure 3 would point

K

out more intervals in which partials coincide and therefore

are or could be used in music.



16 Ch. 1

0
X (o] Hg Ig Q [») [o) [«] (o] [e) [o] [o] [e)
{1‘1\ ! © [#] o
Yy PN
J T e
1/1| 6/5 | 5/4| 4/3|3/2| 5/3| 2/1| 5/2| 3/1 | 4/1 | 5/1 |6/1
N ©
M £ Q
V4 . [o] -

Figure 4. The intervals in which one or more of the first
six partials of one tone coincide with one or more of the
first six partials of the other tone. Just intonation is
required for the exact coincidence of the partials.
Inasmuch as the frequency of a complex tone is that of

its fundamental, the frequency ratio of two complex tones is
that of their respective fundamentals. It may have been
noticed that a definite relationship exists between the fre-
quency ratio of an interval and the ordinal numbers of the
partials forming the first (or lowest) coincidence. If the
frequency ratio of the higher tone to the lower is 3/2, the
lowest coincidence is that of the second partial of the
higher tone with the third partial of the lower tone. When
the fundamentals have the ratio 5/4, the fourth and fifth
partials respectively coincide; and when the fundamentals
have the ratio 5/3, the third and fifth partials respec-
tively coincide. These are not the only partials that coin-
cide. In the perfect fourth, not only would the fourth par-
tial of the lower tone coincide with the third partial of
the higher but also the eighth partial of the lower would
coincide with the sixth of the higher, the twelfth of the
lower with the ninth of the higher, and so forth. Out of
necessity, the coincidences of the partials always follow an
order identical to that of the harmonic series; therefore,
it is possible to discover all the coincidences of an inter-
val by determining the lowest coincidence only and remember-—
ing that the other coincidences are related to it as the

upper partials of a musical tone are to the fundamental.
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Let x° and y° be the smallest positive integers that
can express the ratio of x to y. Then
x/y = x°/y° D1
and transforming this to
v°'x = x°y D2
gives us the perfect expression of the rule we have just
presented concerning the coincidence of partials. To under-
stand this, we observe that y°x is the frequency of a par-
tial of the higher tone, x°y is that of a partial of the
lower tone, and that the coincidence of partials means
equality of their frequencies. D2 gives the lowest coinci-
dence because x° and y° are the smallest whole numbers that
can express the ratio of x to y. Higher coincidences can be
found simply by multiplying y°x and x°y by the successive
integers of the harmonic series.
Intervals in which partials can be found to coincide
(even if it is necessary to use very high partials) have
frequency ratios that can be expressed in whole numbers.

Such ratios are known as commensurable ratios, and intervals

with commensurable ratios will be referred to here as com-
mensurable intervals. It is possible for two tones to have
a frequency ratio at which no partials can be found to coin-

cide. Such a ratio is called an incommensurable ratio, and

intervals with incommensurable ratios will be called incom-
mensurable intervals. Except for the octaves, the equally
tempered scale is built entirely in incommensurable inter-
vals.

As in the case of a commensurable interval, the aggre-
gate partials of the acoustic spectrum of an incommensurable
interval fall according to a pattern of frequency relation-
ships that is uniquely determined by the ratio of the fre-

quencies of the component tones. This means, on the one
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hand, that intervals with identical ratios possess a physi-
cal likeness to each other and, on the other hand, that
intervals with different ratios are physically unlike. From
this fact, a reason may be inferred why the frequency ratio
of two tones determines the kind and size of the interval,
and hence why, in musical practice, equal ratios of fre-

quency are heard as equal differences in pitch.

E. Periodic Motion

The statement (quoted in Section C) that "all musical
tones are periodic functions" means that, when the air
transmits a musical tone to the ear, the motion of the air
in the external auditory canal is a periodic function of
time -- which is to say that particle displacement and
particle velocity vary with the advance of time in such a
way as to be always the same as they were just a period ago.
In effect, then, it has been said that the physical essence
of musical tone is periodic motion. Figure 35 is a graphic
representation of such motion. The point of static equi-
1ibrium is understood to be zero displacement. Displacement
in one direction from this point is positive displacement;
displacement in the opposite direction is negative displace-
ment. Any portion of the path of motion that cannot be di-
vided into an integral number of equal and like parts and
yet is continuously repeated in its entirety is called a
cycle. The frequency is the number of cycles occurring in
one second. The period is the time required for one cycle;
it equals the reciprocal of the frequency.

In describing musical tones as periodic functions, we
have noted that the repetition of cycles is an essential
characteristic, but we have not specified how much repeti-
tion is required. One cycle by itself does not constitute

periodic motion; two cycles do; but how many cycles are
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Figure 5. Graphic representation of periodic motion,

needed to convey the sensation of tone? Experimental find-
ings reported by Stevens and Davis (Hearing, pp. 101-102)
indicate that at least 3 cycles are required to produce the
experience of a definite pitch but that a minimum duration
of .011 seconds is also required. The number of cycles or
seconds required to perceive the pitch of a tone is a func-
tion of frequency. 3 cycles or .06 sec. are required at 50
cps; 7.5 cycles or .015 sec., at 500 cps; 70 cycles or .014
sec., at 5000 cps; more, at higher frequencies. The author
estimates that even the shortest durations typical of musi-
cal performance satisfy these requirements.

A tone that is strictly periodic is called a steady
tone because its pitch, timbre, and loudness are constant.
If any or all of these attributes are continuously changing,
the tone may be called unsteady. Contrary to the assertion
that all musical tones are periodic functions, unsteady
tones are common in music. The tone of the piano is un-
steady because it is diminishing. A tone sung or played

with a vibrato is unsteady because it is pulsating. The
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ability of the organ and the principal orchestral instru-
ments to produce unsteady as well as steady tones 1s appre-
ciated by both musicians and nonmusicians. However, the
unsteadiness ordinarily encountered in musical practice 1s
sufficiently limited in extent that, while musical tones are
not necessarily steady, they are at least approximately so
and that, while periodic functions provide accurate mathe-—
tical representation of steady tones, they offer approximate
representation of unsteady tones. The representation of
periodic motion by means of periodic functions follows.

Time will be represented by t; the particle displace-
ment, which varies with t, by u; and the frequency, which is
constant, by x. Being periodic, trigonometric functions are
used to represent u as a function of t; but they are func-
tions of angles, which we choose to measure in radians; and
there are 2T radians per cycle; therefore, the number of

radians per second is 2mx. Let
Q = 21x El

and let the particle velocity, which is the derivative of u
with respect .to t, be represented by V.

Tl’ T2, TB’ and so on are the respective times when the
first, second, third, and so on partials contribute zero
displacement with maximum velocity to the air in the audi-
tory canal. UO is a static displacement; Ul’ U2, U3, and
so on are the respective displacement amplitudes of the
first, second, third, and so on partials of a complex tone;
and Vl’ Vz, V3, and so on are the respective velocity ampli-
tudes. With these symbols, particle displacement and
velocity can be represented as periodic functions of time by

means of the two following Fourier series:
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U, + U

e
i

sin [Q(t - Ti)] + U, sin [2Q(t - Té)] + U, sin [3Q(t - T3)]

0 1 2 3
+ ... E2
v = du/dt
= QU1 cos [Q(t - Ti)] + 2QU2 cos [2Q(t - Té)] + 3QU3 cos [3Q(t - T3)]
+ .
= V1 cos [Q(t - Tl)] + Vé cos [20(t - Té)] + VS cos [3Q(t - T3)]
+ ... E3
where
V1 = QUl’ V2 = 2QU2, V3 = SQUB, and so on. E4

The terms U1 sin [Q(t - Tl)] and V1 cos [Q(t - Tl)] repre-
sent the contribution of the first partial. Two cycles of
this contribution are plotted in Figure 6, which shows u
versus t as if there were no static displacement and no
other partials. This kind of motion consists in oscilla-
tions between two points equally distant but opposite in
direction from a point of static equilibrium and is known as
sinusoidal motion or simple harmonic motion. The displace-
ment amplitude is the distance from the point of equilibrium
to one of the extreme points. The kind of tone that this
form of vibration gives rise to is called a pure tone or a
simple tone.

At the point of greatest positive displacement (A) the
particle has no velocity. As it moves from this point to
the position of zero displacement (B) its velocity decreases
to a minimum (—Vl). Continued motion from this point to
that of greatest negative displacement (C) is accompanied by
increase of the velocity to zero. From this point the
direction of motion is reversed, and the velocity increases,
reaching a maximum (Vl) at the point of zero displacement
(D). B and D are identical positions of the particle, the

difference being that D is passed half a period later than B
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Figure 6. Sinusoidal motion. Uy is the displacement
amplitude. A, B, C, D, and so forth point out the
path of the motion with respect to time. T, is the
time at which the particle first passes from negative
to positive displacement.

and in the opposite direction. Continued motion from the
point of equilibrium (D) returns the particle to the posi-
tion of maximum positive displacement (A') and is accompa-
nied by reduction of the velocity to zero once again. This
completes the path of motion; continued motion merely re-
peats the path just described. A' is the same position as
A,
later; similar distinctions exist between B and B', C and
C', and D and D'.

It is not of interest here to discuss the ways in which

the distinction being that it is reached a full period

the voice and the musical instruments produce a complex form
of periodic vibration such as is shown in Figure 5, but it
is of interest to understand that such a form of vibration
can be resolved into sinusoidal components such as the terms

of E2 and E3. Discovering the sinusoidal components of a
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complex periodic function is known as harmonic analysis and
can be accomplished with the aid of Fourier's Theorem, which
has been presented in many mathematical works. J.B.J.
Fourier presented the mathematical procedure for the har-
monic analysis of periodic vibrations in 1822 in his La

Théorie Analytique de la Chaleur.

F. Loudness and Intensity

Loudness has been defined as ''the magnitude of an audi-

nld Obviously the loudness of a tone of con-

tory sensation.
stant frequency and overtone structure will correspond
roughly to the amplitude of the vibration. It is also true
that, for a tone of constant displacement amplitude and com-
position, the loudness is greater for a higher frequency and
less for a lower frequency. The one physical property of
sound that is found to be principally responsible for the

experience of loudness is called intensity or sound inten-

sity and, for sound waves in the air, can be defined in
terms of the rate of flow of energy through a unit area of
the medium.

In this kind of.energy flow, certain particles of air
are displaced by the pressure of other particles, and work
is done. This pressure is an alteration from the atmos-
pheric pressure; it is called excess air pressure and is
represented by p. Let the density of the air at atmospheric
pressure be represented by D, and let the speed of sound in
air be signified by ¢. Then the excess pressure due to
sound is related to the particle velocity in the following

simple way:

15. Fletcher and Munson, '"Loudness, Its Definition, Measure-
ment and Calculation," The Journal of the Acoustical Society
of America, vol. V (1933), pp. 82-108.
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p = Decv F1

If substitution is made for v from E3 into F1, it 1s seen
that p varies periodically in just the same manner as V.
This periodic alteration in pressure on the ear drum acti-
vates the mechanism of the ear so as to lead to the sensa-
tion of tone.

Let the work done be represented by W, and let us apply
the formula: work equals the force times the distance thru
which it acts. Recognizing that the force (p in this case)
is a function of time, we have recourse to differentials and
write ‘

dW = pdu F2
Since v = du/dt by definition,
du = vdt F3

and substitution from this into F2 results in

dW = pvdt F4
‘
Integrating this thru one period gives

_ 1/x
Wo -_[6 pvdt F5

which is the work done in one cycle.

The intensity, defined as the rate of flow of energy
and denoted by I, is the work done per second; therefore, it
is obtained by multiplying the work done in one cycle by the
number of cycles per second, with the result

I = xW,
- 1/x
= xJy /¥ pvat F6

Substitution into this from F1l gives
1= xJal/X Dev2dt

Dcthél/xvz dt F7

il
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Using the expression given for v in E3 and performing the

indicated integration gives us

‘jgl/x v2dt = —%;(V; + V; + V; + .. F8
whence, because of F7,
2 2 2
I =% Dc(Vl + V2 + V3 + . . .)
vhere = Il + I? + 13 + .. ; 2 F9
I1 = % Dch, I2 = % Dev,, 13 = DcV3, e F10

It is seen that the intensity of a complex tone is the sum
of the intensities of its partials.

It has been found that equal differences of loudness of
a tone of constant frequency correspond better to equal
ratios of intensity (Weber-Fechner law) than to equal dif-
ferences of intensity. A scale in which equal ratios are
represented numerically as equal differences is one in which
each value is represented by its logarithm -- the power to
which a certain number, called the base, must be raised to
produce the given value. In such a scale the zero point
does not represent zero intensity but rather an arbitrarily

“10 hicrowatts per

chosen value. One recommended value is 10
square centimeter; it has the advantage of falling reason-
ably near the threshold of audibility at a frequency of 1000
cycles per second.

If the zero point or '"reference-intensity' is repre-
sented by I., the "intensity-level" (IL) in decibels (db)

can be formulated thus:
IL = 10 loglOI - 10 loglOI° F11

With microwatts per square centimeter as the unit of inten-

sity and I, = 10_.lO microwatts per square centimeter,

IL = 10 log,,I + 100 F12
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The intensity range of the ear at the frequency at which the
ear is most sensitive is about 140 decibels. The intensity
level of ordinary conversation is around 60 decibels; that
of musical performance may range from about 25 to 95 deci-
bels.

The loudness of a tone, as judged by the ear, does not
always correspond exactly to its intensity level. For high
intensity levels and over a considerable range of frequen-
cies there is near correspondence, but for low intensities
and extremely low or high frequencies there is a great dif-
ference. A sound of low frequency (below 100 cps) or of
high frequency (above 4000 cps) must be more intense than a
sound of medium frequency to equal it in loudness. The per-
ceived loudness of a tone is also affected by its duration,
greater durations being required at lower frequencies for
equal loudnesses, thereby suggesting that the absolute num-

ber of cycles conditions the sensed loudness of a tone. See

Wever, Theory of Hearing, pp. 317-319.

G. Phase Relations in Complex Tones

In periodic motion, a phase is any point or stage in a
cycle of the motion. In Figure 6, the points A, B, C, and
D are phases of sinusoidal motion. Here, the motion is

given by

u = U, sin [Q(t - Ty)] G1

v = V1 cos [Q(t - Tl)] G2
and phase can be identified by knowledge of the angle
Q(t - Tl), whose values at A, B, C, and D are respectively
-3w/2, -M, -w/2, and O.

Gl and G2 contain only the contribution of the first

partial. 1In order to facilitate inclusion and discussion
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of all the partials, let n equal the number of partials, and
let
r=1, 2, 3, ... n G3

Then Ur sin [rQ(t - Tr)] and Vr cos [rQ(t - Tr)] can repre-
sent the contribution of any partial according to the value
of r, and the summation sign 3. can be used to unite the
contributions of all the partials in expressions equivalent
to E2 and E3 as follows:

n
u = UO + j;: Ur sin [rQ(t - Tr)] G4
r=1
n
v =2 V_ cos [rQ(t - T_)] G5
T T

Let lr be zero or a positive or negative integer or

integral vafiable, and let

Pr = rQ(t - Tr) - Zwlr
= 2mW[rx(t - Tr) - lr] G6
Then
sin Pr = sin [rQ(t - Tr)] G7
and
coSs Pr = cos [rQ(t - Tr)] G8

regardless of the particular integral value of lr at any
time; and rQ(t - Tr) in G4 and G5 can be replaced by Pr:

n
u = UO + j;: Ur sin Pr G9
r=1
n
v=2>_V_ cosP G10
;T r

In view of this and the definition of Tr in Section E, we
see that Tr can also be defined as a time (or the first

time) when Pr equals O or a multiple of 2.
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Pr is called the phase angle. If 1 1is restricted by

r
the condition that

0

178N

rx(t - Tr) - 1r <1 G1l1

then

0 < Pr < 2m Gl2
and Pr becomes a periodic function of the time with frequen-
cy rx. As such, it offers us an explicit identification of
the phase. This is seen in the following tabulation, which

applies to Figure 6:

Phase A B C D A’ B' cC' D'

Q(t - Tl) -3m/2 | - -/ 2 0 /2 s 3172 21

Py /2 4 3T/ 2 0 T/2 m 317/2 0
As defined in G3, r can designate any partial. In

order to be able to designate any other partial in the same

way, we introduce s and, like r, let
s =1, 2, 3, ... n G13
Then, following the example of G6,

P_ = 2MWsx(t - T - 1] . Gl4

and we may now look into phase relations in complex tones,
that is, phase relations between different partials of the
same complex tone.

When two pure tones have the same frequency, the differ-
ence between their phase angles is constant; and this ""phase
difference'" is sufficient to characterize the phase relation-
ship between the two tones. In a complex tone, no two par-
tials have the same frequency; and the phase difference, ob-

tained by subtracting G6 from Gl4, 1is

p - P
S r

i

omM{x(s - T)t - x(sT = rT.) - 1 + 1] G15

a variable.
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This is not an apt characterization of the phase relation-
ship between two partials.

It is desirable to find, if possible, a phase relation-
ship that does not change with the advance of time. This is
accomplished by the elimination of t between G6 and Gl14,
with the result that, at all times,

rPS - SPr = 2ﬂIrsx(Tr - TS) + slr - rlS] G116

a constant.

slr - rlS is a multiple of the greatest common divisor of r
and s. If r and s are relatively prime, that is, if their
greatest common divisor is 1, then slr - rlS is an integer

and may be chosen so that
0 < rsx(T_ - T ) + sl -rl_ <1
= r s r S
0 << rP - sP_ < 2T G17
= s r

G16 offers us a clear and concise characterization of
the phase relationship between any two partials, such that
different constant values of rPS - sPr represent different
phase relationships. To identify the phase relations among
all the partials of one tone, probably the simplest and most
systematic procedure is to relate the phase angles of all
the upper partials to that of the fundamental. To this end,
we set r = 1 to designate the fundamental, and let s > 1 to

represent any upper partial:

PS - sP1 = 2'Tl’[sx(T1 - TS) + sl1 - lS] G18
sl1 - 1S is an integer. If it is chosen so that
0 < sx(T, - T )+ sl, - 1_<1 G19
then - 1 S 1 S
0 <P - sP, 2T G20
= 75 1
and, when P1 = 0, PS is subject to the same limits as Pr is
in G12.
Figures 7 and 8 present P1 and P2 as functions of t in
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Figure 7. Phase relation P2 - 2P1 = 0, T1 = 0. T2 = 0,
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Figure 8. Phase relation P2 - 2P1 = 37/2. T1 = 0.

T, = 1/(8x).
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two of the many possible phase relations. Employing these

in G9 with n = 2 gives us the equations for the correspond-

ing paths of motion of the air in the auditory canal. In
Figure 7, P2 = 2P1; and

u = U0 + U1 sin P1 + U2 sin 2P1 G21
In Figure 8§, P2 = 2P1 + 3M/2; and

u = U0 + U1 sin P1 + U2 sin (2P1 + 3T/2) G22

Curves C and D in Figure 31 of Helmholtz' Sensations of Tone

show the visibly different vibration patterns that follow
from G21 and G22.

Helmholtz was concerned as to whether different phase
relations, hence different paths of motion such as these,
make the same or different impressions on the ear. In ques-
tion is whether or not phase relations in complex tones
affect the quality of tone. If changes in phase relations
between the partials of complex tones make no difference in
the way the tones sound to the ear, then tone quality is not
affected. If changes in phase relations make different im-
pressions on the ear, then the quality of a musical tone is
affected.

After having experimented upon ''numerous combinations
of tone with varied differences of phase' without experienc-
ing '"the slightest difference in the quality of tone,'" Helm-
holtz laid it down as a law that

differences in musical quality of tone depend solely
on the presence and strength of partial tones, and
in no respect on the differences in phase under 6
which these partial tones enter into composition.

We have seen that differing phase relations in complex
tones give rise to different vibration patterns. Now dif-

ferent vibration patterns present physically different

16. Sensations of Tone, p. 127.
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stimuli to the ear, yet Helmholtz found that these different
stimuli resulting from phase differences evoke the same
auditory sensation. Some investigators have been under-
standably reluctant to accept such a finding as a law, or
they have accepted it only with reservations. Let us
briefly consider what three of these have said.

During Helmholtz' lifetime, R. Koenig wrote:

Hence, although the quality of tone principally
depends on the number and relative intensity of the
harmonic tones compounded, the influence of differ-
ence of phase is not by any means so insignificant
as to be entirely negligible. We may say, in gen-
eral terms, that the differences in the number and
relative intensity of the harmonic tones compounded
produces those differences in the quality of tone
which are remarked in musical instruments of dif-
ferent families, or in the human voice uttering
different vowels. But the alteration of phase be-
tween these harmonic tones can excite at least such
differences of quality of tone as are observed in
musical instruments of the same family, or in dif-
ferent voices singing the same vowel.17

In 1938, C.E. Seashore published the following state-
ment:

Timbre is that characteristic of a tone which de-
pends upon its harmonic structure as modified by
absolute pitch and total intensity. The harmonic
structure is expressed in terms of the number,
distribution, and relative intensity of its par-
tials. Recent experiments show that we must also
take phase relations into account. Physically the
timbre of the tone is a cross section of the tone
quality for the moment represented by the duration
of one vibration in the sound.

More recently, J. Roederer wrote as follows:

Psychoacoustical experiments with electronically
generated steady complex tones, of equal pitch and
loudness but different spectra and phase relation-

17. Translator's appendix to Sensations of Tone, p. 537.

18. Psychology of Music, p. 97.
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ships among the harmonics, show that the timbre
sensation is controlled primarily by the power
spectrum (Plomp 1970). Phase changes, although
clearly perceptible, particularly when effected
among the high frequency components, play only a
secondary role.l19

The power spectrum referred to here is the same thing
as the overtone structure, defined in Section C, and the
harmonic structure, referred to by Seashore. While these
three authors question Helmholtz' conclusion, they neverthe-
less show general agreement that timbre depends primarily on

overtone structure and only secondarily on phase relations.

H. Vibrato: Periodic Pulsation

There can be no doubt that the vibrato has been used
for centuries; one might speculate as to whether or not it
is as o0ld as music itself. Practically all singers use it;
in fact, it is difficult to produce a good vocal tone with-
out a vibrato. The clavichord, which is capable of a pleas-
ing vibrato, called in German Bebung, dates back to the 14th
century. Martin Agricola, in his Musica instrumentalis
deudsch (ed. 1545), refers to Polish fiddlers:

Who, while their stopping fingers teeter,
Produce a melody much sweeter
Than 'tis on other fiddles done.Z20

The scientific study of the vibrato is of recent origin,

however. The first published experimental investigation of

the subject was by Schoen in 1922.21 A review of this

19. Juan G. Roederer, Introduction to the Physics and
Psychophysics of Music, second edition, p. 136.

20. Curt Sachs, Our Musical Heritage (1948), p. 160.
Agricola's work was first issued in 1528.

21. Max Schoen, '"An Experimental Study of the Pitch Factor
in Artistic Singing," Psychol. Monogr., vol. 31 (1922),
ppr. 230-259.
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publication is given in that author's more recent book, The

Psychology of Music, pp. 202-205, according to which he

found that the vocal vibrato consisted of synchronous pul-
sations of both frequency and intensity limited as to extent
of frequency variation22 and rate of pulsation; that the
listener appreciated the vibrato principally as a factor of
tone quality; and that '"the vibrato was a basic, fundamental
attribute of an effective singing voice.'" He also pointed
out that the listener can hardly distinguish between a fre-
quency oscillation and an intensity oscillation, '"especially
when the fluctuations take place rapidly and periodically."
In 1932 the University of Iowa published the first

volume of Studies in the Psychology of Music under the

editorship of Carl E. Seashore. This volume was devoted
entirely to the subject of the vibrato and contained
material gathered in experimental studies made at the Uni-
versity of Iowa. Accurate techniques had been developed for
determining certain facts about the physical nature of
vibratos produced by performers, and apparatus had been con-
structed to produce synthetic vibratos in which the wvarious
factors were under control,

Some of the physical facts brought to light were that
the vibrato is very common in the voices of singers and in
the tones of the bowed string instruments; that periodic
variations in the overtone structure constitute a third fac-
tor in the nature of the vibrato; that the variation of fre-
quency with time is approximately sinusoidal; that the aver-
age extent of frequency variation in the vibrato of the vio-
lin, viola, and cello is approximately a quarter tone; that

the average extent of the vocal vibrato is approximately a

22. The extent is measured from the lowest to the highest
frequency reached in the fluctuation.
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semitone; that the average rate of pulsation of both kinds
of vibrato is between six and seven per second, except that
the rate for the cello is somewhat slower; that the average
extent of intensity fluctuation is about 4.2 decibels for
string instruments and about 2.4 db for voices; that the
fluctuations of frequency, intensity, and overtone structure
are synchronous; and that the frequency factor is more im-
portant than the intensity factor both physically and
psychologically.

The facts as to how the vibrato is heard are at least
equally important here. It was found that the vibrato is
not always appreciated as such, being heard rather as a fac-
tor 1in tone quality, especially with untrained observers.
Trained observers could distinguish easily between the con-
tributions of vibrato and of overtone structure to tone
quality. This led to the adoption of the term sonance
(successive fusion) to designate the contribution of the
vibrato to tone quality, leaving the term timbre (simul-
taneous fusion) for the effect of overtone structure on tone
quality.

The pitch of the pulsating tone is heard as ''one
salient pitch near the mean pitch of the oscillations in the
vibrato tone." A trained observer can pick out "illusory
upper and lower limits at will as continuous pitches," the
salient pitch, however, remaining dominant. Musical ob-
servers ordinarily "estimate the extent of fluctuation to be
about one fourth of what it actually is.™

With these facts in mind, Seashore gave the following
definition of the vibrato:

The vibrato in music is a periodic pulsation,
generally involving pitch, intensity, and timbre,
which produces a pleasing flexibility, mellowness,
and richness of tone.?23

23. University of Iowa Studies in the Psychology of Music,
vol. I, p. 349.
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Not all musicians agree with this definition of the
vibrato. Some regard it as a fault or defect to be avoided.
Certainly the subject has been a confused one for many. The
following quotation from Seashore offers some explanation:

It is interesting to note that the real ground
for the confusion which exists in the musical world
and even among scientific and critical listeners
lies in the fact that in the hearing of the vibrato,
the normal ear is subject to a series of gross nor-
mal illusions. Among these is the astonishing
under-estimation of the magnitude of the vibrato in
hearing which lies in the fact that the oscillation
of pitch is heard as if it were only % to % of its
actual extent, and a similar underestimate occurs
for intensity. Another normal illusion consists in
the persistent confusion of oscillations in pitch
and intensity in listening so that a musician, or
even a generation of musicians, will assert that it
is oscillation in pitch, that it is oscillation in
intensity, or, more frequently, that it is neither.
A third normal illusion which makes the vibrato in
its present gross form tolerable is the phenomenon
of sonance, which lies in the fact that successive
periodicities, when of sufficient rate, tend to fuse
into a unified tone somewhat in the same manner that
the simultaneous overtones in a violin clang fuse
and are heard together as one tone. A fourth normal
illusion which is a condition for making the vibrato
tolerable is the fact that even with a pitch oscil-
lation of a semitone the intonation is heard as of
a particular tone which can easily be identified
with standard pitch, the musical effect heard being
that of a changing tone quality rather than specific
changes in pitch, intensity, and timbre. Were it
not for these four and numerous similar normal il-
lusions which function in all musical hearing, the
vibrato as it now exists would be utterly intoler-
able. It is this fact, that the vibrato is not
heard even by the best musicians as it really is,
which lies at the bottom of the confusion which has
prevailed on this subject .24

A more recent study made at the University of Iowa in-

vestigated the preferences of listeners as to rate and

24. 1Ibid., p. 10.
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extent of frequency fluctuations in the vibrato.25 Complex
tones were used in this experiment. It was found that some
vibrato was definitely preferred to none; that the preferred
rate was six to seven pulsations per second; that persons
without musical training preferred an extent of a quarter
tone; and that trained musicians preferred an extent of one
tenth of a tone. We note that the average rate of pulsation
and the preferred rate are the same and that the average ex-
tent of frequency variation is greater than the preferred

extent.

25. John F. Corso and Don Lewis, '"Preferred Rate and Extent
of the Frequency Vibrato," Journal of Applied Psychology,
vol. 34 (1950), pp. 206-212.
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Chapter 2

THE AUDIBLE PHENOMENA OF HARMONIC INTERVALS

When two or more simple tones are presented to the ear
simultaneously as in the acoustic spectrum of an interval,
one might expect every tone to sound just as it does alone
without any disturbance or other effect arising from the
presence of the other tones, but such is not necessarily so.
Any or all of the following may occur: (1) interference, (2)
combination tones, (3) masking. In this chapter, separate

consideration is given to each of these three phenomena.

A. Interference: Basic Formulation

Interference is either a reinforcement or a weakening
of the sound of a harmonic interval that may result when any
two tones of its spectrum are at or near the same frequency.
The sound is reinforced when the tones are in the same phase
but weakened when they are in opposite phase (a phase dif-
ference of 9 radians).

When two tones have the same frequency, their phase re-
lationship is constant; and the interference, if any, is
steady. Thus, two or more simple tones forming a coinci-
dence by sounding together at the same frequency combine to
produce one effective tone whose frequency is that of the
comﬁonent tones and whose intensity depends on the intensi-
ties and phase relations of the components.

When two tones have different frequencies, their phase
relationship varies periodically between same and opposite.
This results in alternate reinforcement and weakening; and
the interference is unsteady, giving rise to an experience
of pulsation. Consequently, two or more simple and there-

fore steady tones sounding together at slightly different
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frequencies have not only the aspect of a spectrum but also
the aspect of a single pulsating tone, called the intertone,
that is neither simple nor steady. The pulsations of the
intertone are commonly known as beats and can be heard in
the near approach to any interval that exhibits the coinci-
dence of partial tones in its spectrum. In this section,
the physical reality of these two apparently contradictory
aspects of the same phenomenon is demonstrated mathemati-
cally. The word intertone is used to denote either the
effective tone when the spectral tones are at the same fre-
gquency or the pulsating tone when the spectral tones are at
different frequencies.

The following symbols pertain to the tones of a spec-

trum:
n = the number of tones in the spectrum. 2> 2.
r,s =1, 2, 3, ... n
= integers denoting tones of the spectrum.
X, = frequency in cycles per second. Constant.
0 < Xq < X < Xq < ... £ X
Qr = 2ﬁxr
= frequency in radians per second. Constant.
lr = Zero or a positive or negative integer or integral
variable.
Pr = Qr(t - Tr) - 2ﬂlr = 2ﬂ[xr(t - Tr) - lr]
= Qrt + d,
= the phase angle at time t. Variable.
q, = —(QrTr + Zﬂlr) = —2‘rr(err + lr)
= phase displacement. Constant.

= the phase angle at time 0. Constant.

Tr = the first time when Pr = 0 or a multiple of 2.
Constant.

Vr = velocity amplitude. Constant.

Ir = Y Dch = intensity. Constant.
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The symbols pertaining to the intertone are as follows:
P = phase angle. Variable.
Q = dP/dt
= the instantaneous frequency in radians per second.
Constant or variable.
X = Q/2m
= the instantaneous frequency in cycles per second.
Constant or variable.
V = velocity amplitude. Variable.
I =% DcV2
= the instantaneous intensity. Variable.
The particle velocity of the air in the external audi-

tory canal is given as resulting from a spectrum by

n
v = ZV cos P Al
st T

The same particle velocity is given as resulting from the
intertone by

v = V cos P - A2
These relations for n = 4 are illustrated in Figure 1,

whence we obtain two more equations:

n

w o= Z_:VI‘ sin Pr A3
r=1

w =V sin P Ad

These four equations are now employed to determine the
intensity, phase angle, and frequency of the intertone in

terms of the spectrum.

2 2 2 n n
v =V cos P = E > V.V_cos P cos P A5
r=1 s=1 © ® r S
2 2 2 n n
w =VsinP=2_ 2 VV_sin P_ sin P A6
r=1 s=1 ° S T S
2 2 2 n n A7
v +w =V = Z > VrVS CcoSs (PS - Pr)

=1

=
il

-

n
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Figure 1. Relations between the spectrum and the intertone.

i

Vl[V1 + V2 cos (P2 - Pl) + V3
+ V2[V1 cos (P2 - Pl) + V2 + V3
+ VS[Vl CcOSs (P3 - Pl) + V2 cos (P3 - P2) + V

cos (P3 - Pl)

+
2 2 2

V1 + V2 + V3 + ... F 2V1V2 cos (P2 - Pl)

+ 2V VSCOS (P3 - Pl) + 2V2V3 cos (P3 - P2) +

2
= 1 DcV

I1 + I2 + 13 + + 2 ‘VIll2 cos (P2 - Pl)
+ 2 V1113 cos (P3 - Pl) + 2'V1213 cos (P3 - P

the instantaneous intensity of the intertone.

+

3

cos (P3 - P2) +

+

2)'

+...

A8

A9

Al10
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w/v = sin P/cos P = tan P
P = arc tan (w/v)
= the phase angle of the intertone.
dv/dt = -;iiQrVr sin Pr
n
dw/dt = Egigrvr cos P
n n
vdw/dt = Z;; géiQrVer cos P cos P
n n
wdv/dt = —;Zi géiQrVer sin P sin P_
Q = dp/dt = vdw/dE - wgv/dt
v o+ w

n n )
= ;é{ EEiQrVrVS cos (P, - P/V

= the instantaneous frequency of the intertone

in radians per second.
Q/2m

n n 2
= Eéi géixrvrvs cos (P, = P)/V

= the instantaneous frequency of the intertone
in cycles per second.

Ch.

Al1l
Al2

Al3

Al4

Al15

Al6

Al7

Al18

Al19

A20

xlvl[V1 + V2 cos (P2— Pl) + V3 cos (PB— Pl) +
X2V2[V1 cos (P2- Pl) + V2 + V3 cos (PB_ P2) +
XSVB[Vl cos (PB— Pl) + V2 cos (PB— P2) + V3 +
2
\
2 2 2
xlvl + X2V2 + X3V3 + + (xl+ X2)V1V2 cos (P2— Pl)

(x1+x3)V1V3 cos (PS—Pl) + (x2+x3)V2V3 cos (PB—P2)+...

2

\

A21
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X1I1 + x2I2 + x313 + ...t (xl+x2)'VI112 cos (P2—Pl)

+ (xl+x3)'\/I1I3 cos (PS—Pl) + (x2+x3)"\/I2I3 cos (P3~P2) +..

X =

I A22

The terms in A10 that contain the functions
cos (Pz— Pl), cos (P3— Pl), cos (P3— P2), and so on
[that is, terms of the type 2VT;T; cos (P~ P), r < s]
arise from pairs of tones in the spectrum and account for
the interference that may result when the tones of a pair
are at or near the same frequency. Since terms of this type
account for the interference, they are referred to here as
interference terms.

P - P
S r

(QS - Qr)t + a4 T oa, A23
= the phase difference between any two

tones of the spectrum.

When the tones of a pair have the same frequency,
Qr = Qs’ PS - Pr =4 T 4. T a constant, and the correspond-
ing interference term is a constant. If all the tones of
the spectrum have the same frequency, all the interference
terms are constants, I is constant, and the right side of
A22 reduces to the common frequency of the spectral tones,
showing that the intertone is then effectively just one sim-
ple tone. Were it not for the interference, the intensity
of the effective tone would equal the sum of the intensities
of the components.

When the tones of a pair have different frequencies,
PS - Pr is not a constant, and the corresponding interfer-
ence term varies sinusoidally, thereby giving rise to a
beating of the intertone. Each such term has a maximum
value of 2VT;T;, a minimum of -ZNT;T;, and an average of O.
These terms subtract as much as they add to the fluctuating
value of I; therefore, the average value of I is obtained by

simply deleting these terms. Let this be designated by H;
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then

as
il

n
2 1. A24
r=1

= the average intensity of the intertone.
The beats consist in the periodic variation of I from its
average; and ZVT;T; are the amplitudes of this variation;
therefore, the 2NE;T; are measures of the physical intensity
of the beats.

Averaging the product of A22 and I/H results in a
weighted average value of x that counts the more intense
cycles of the intertone as 1if they were more numerous in-
stead of more intense. This may be called the salient fre-

quency of the intertone and is designated by

n
S = ;;ixrlr/H A25
That xland X are lower and upper limits of S can be shown
as follows:
n
S = xg + :Z:(xr - x )I./H A26
r=1
n
= xq * j;:(xr - xl)Ir/H > x4 A27
r=1
n
=X, - > (xn - xr)Ir/H < X0 A28
r=1
x, < 8 <X A29
1 n

Inasmuch as a sum is independent of the order of sum-

mation, A28 may be written as

n
S = x, - E;i(xn - X 1o Ine1-p/H A30
If the spectrum is balanced,
X~ Xpyq-pr - X T % A31
In+1-—r = Ir A32

A30 becomes
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n
8 = x_ - Z(xr - x)I/H A33
r=1
and addition of this to A27 results in
28 = x1 + Xn
whence
S = % (x1 + xn) A34
=% (Xr * Xn+1—r) A35

The author suggests that, even as the pitch of a pul-
sating tone is heard as '"one salient pitch near the mean
pitch of the oscillations in the vibrato tone,”1 an experi-
mental investigation would find one salient pitch attributed
to an intertone that would correlate well with the salient

frequency S.

B. Interference: Beats

The rate of increase of PS— Pr in radians per second is
d(PS~ Pr)/dt = QS— Qr Bl
and the frequency of cos (PS— Pr) in cycles per second is

[d(PS~ Pr)/dt]/ZW = X7 X, B2

A10 and A22 contain terms that are proportional to
cos (PS— Pr); therefore, I and x pulsate at such frequencies
(or rates) as X 7T X, T < 8. In other words, the frequen-
cies of the interference terms are the rates of pulsation of
the intertone, and these rates of pulsation are the differ-
ences between the frequencies of the spectrum.

If no two frequency differences are the same, we find
the following correspondence between the number of tones in
the spectrum and the number of rates of pulsation in the

intertone:

1. Ch. 1, Sec. H.

2
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Number of tones " 2 l 3 l 4 l 5 ] 6 | n

Number of rates “ 1 l 3 ] 6 !10 l15| n(n - 1)/2

However, if some frequency differences are the same, the num-
ber of rates of pulsation is less. In particular, if there
is just one common frequency difference between successive

tones of the spectrum, the correspondence is as follows:

Number of tones ” 2 ‘ 3 ' 4 ! 5 ! 6 ! n

Number of rates “ 1 i 2 l 3 ] 4 ‘ 5 I n -1

In this case, the common difference between successive
frequencies is the lowest (or fundamental) rate of pulsation,
and all other frequency differences are multiples of this as
in the harmonic series. The result is that the pulsations,
taken together, are periodic. Let At equal the period of
one pulsation, that is, the increase of t in one pulsation.
Then the fundamental rate of pulsation (the number of pulsa-
tions per second) is 1/At; and other rates, if any, are 2/At,
3/At, and so forth. The restriction to one common difference
between successive frequencies and the immediate consequences
of this restriction can be expressed in a general way by the

simple statement that

X, T X, = (s - r)/At B3

A7 and Al2 are necessary and sufficient conditions for
A2 to be identically equal to Al, but they are not sufficient
for a spectrum of steady tones to be physically likened to
and heard as a pulsating tone. For example, a steady complex
musical tone is an acoustic spectrum of simple tones (evident
by comparison of Al with G10 in Chapter 1) and can be mathe-
matically represented by A2; but it is not realistic to con-
ceive of it as a pulsating tone, and it is certainly not
heard as such. Its intensity is the same as the average in-

tensity it would have if regarded as a pulsating intertone,
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but the pitch attributed to it corresponds to the lowest
tone of the spectrum rather than the salient frequency of
the intertone.

Every term in the numerator of A22 is matched by a term
in its denominator (A10) that involves the same tone or
tones of the spectrum; and, since division of the numerator
by the denominator gives the frequency of the intertone,
division of each term of the numerator by the matching term
of the denominator gives component frequencies of the inter-
tone such that the frequency of the intertone 1is at every
instant an interpolation or extrapolation of the component
frequencies. The component frequencies thus obtained are
Xy, Xg, Xg, ... and (xl+ x2)/2, (xl+ x3)/2, (x2+ x3)/2,
These fall into two groups: the first being the frequencies
X of the spectral tones, and the second being averages
(xr+ xs)/2 of the frequencies of pairs of spectral tones..
Those in the first group enter into the calculation of the
salient frequency (A25); those in the second group are asso-
ciated with the interference terms, each average frequency
being connected with the interference term that involves the
same two spectral tones.

The component frequency associated with the interfer-
ence term involving tones r and s is % (xr+ xs); and the
rate of beating of the same interference term is X~ X
therefore, the number of cycles of the component frequency
for each beat of this term is the quotient
% (xr+ XS)/(XS— Xr)‘ If this quantity is of sufficient
magnitude, every beat is well defined as a tone, and the
intertone is well defined as a pulsating tone. If
% (xr+ xs)/ (xs— Xr) is too small, the needed repetition of
cycles within a beat is lacking and beats are not heard.

This requirement of a minimum number of cycles per beat

to give the sound of a series of separate pulses of tone is
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essentially the same as the requirement noted in Ch. 1, Sec.
E,

tone. The few cycles required just to evoke sensations of

of a minimum number of cycles to convey the sensation of

pitch and loudness are not enough to establish the pitch and
loudness finally experienced after exposure to many cycles.
There is however a limit to the number of cycles needed to
determine the attributes of a tone with a feeling of finali-
ty. Thus there are two limits to the number of cycles rela-
ted to establishing the attributes of a tone: (1) a lower
limit required to evoke sensations of tone and (2) an upper
limit beyond which the recognition of these attributes is
not improved. For example, certain experimental results
have indicated that 10 cycles of a 1000-cps tone convey a
sensation of pitch but that about 100 cycles are required to
determine its pitch with reasonable certainty. The lower
1imit can be set with more precision than the upper limit,
and these limits may vary with the frequency. Between the
two limits, the pitch and loudness build up to their ulti-
mate values gradually as the number of cycles increases.
Similar considerations relate the perception of beats
to the number of cycles per beat. 1If there are more than
two tones in the spectrum, there are two or more values of
% (Xr+ xs)/(xs— xr); and, within limits, the beats with more
cycles per beat are better defined than those with 1less.

The reciprocal of % (Xr+'xs)/(xs— xr) is
Z(XS/xr— 1)/(xs/xr+ 1)

1n (Xs/xr) B4

Z(XS- xr)/(xr+ xs)

R

This is a good approximation as long as Z(XS— Xr)/(xr+ xs)
is not too large (or when % (Xr+ xs)/(xs— xr) is not too
small), which is the condition under which beats can be
heard. The usefulness of this relationship becomes apparent

when we recall that the size of an interval is directly
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proportional to the logarithm of its frequency ratio (Ch. 1,
Sec. B). Thus, within the limits of interest to us, the
number of cycles per beat is approximately equal to

1/1n (xs/xr), which equals 17.31 divided by the size of the
interval between tones r and s in semitones. Clearly then,
since the number of cycles per beat is inversely proportion-—
al to the size of the interval, within limits, the beats be-
tween the smaller intervals are better defined than those
petween the larger intervals, and no beats are heard between
intervals that are too large.

This relationship between the number of cycles per beat
and the size of the interval between the beating tones makes
it easy for musicians to determine for themselves the
approximate number of cycles per beat required to give
audible beats even when working with complex tones provided
intervals greater than a second are in just intonation. It
is found that, of the intervals in common use, the minor
second gives the most definite beats, the major second also
gives definite beats altho less so, and the minor third
gives beats only in the bass range. Upon investigating the
effect'of intervals between the major second and the minor
third in size and in the middle range, the author experien-
ces beats when the frequency ratio between two beating tones
is 8/7 but is uncertain when the ratio is 7/6. This finding
places the requirement for audible beats at approximately
7.5 or more cycles per beat (or an interval of 2.31 semi-
tones or less).

It is easily understood now why a steady complex musi-
cal tone is not heard as a pulsating tone. Its fundamental
frequency is x, and the frequencies of the partials are mul-
tiples of x. Let X, = IX and Xy =T sx; then X~ X, T (s-r)x,
Xs/xr = g/r, and % (xr+ xs)/(xs— xr) =% (r + s)/(s - r).

Beats, if any, must occur between the tones of the smaller
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intervals, and these occur when s = r + 1, in which case the
number of cycles per beat is r + %. It is immediately seen
that the intervals between the lower and usually stronger
partials (in which r < 7) are much too large to give rise to
beats. Beats between the higher successive and usually
weaker partials (in which r 2> 7) have the same rate of beat-
ing as the fundamentlal frequency of the tone itself and are
likely to be accepted as merely a contribution to the timbre.
This matter was investigated by Helmholtz, who said:

If the 15th and 16th partials of a compound tone are
still audible, they form the interval of a semitone,
and naturally produce the cutting beats of this dis-
sonance. That it is really the beats of these tones
which cause the roughness of the whole compound tone
can be easily felt by using a proper resonator.

Hence there can no longer be any doubt that mo-
tions of the air corresponding to deep musical tones
compounded of numerous partials are capable of ex-
citing at one and the same time a continuous sensa-
tion of deep tones and a discontinuous sensation of
high tones, and become rough or jarring through the
latter. Herein lies the explanation of the fact al-
ready observed in examining qualities of tone that
compound tones with many high upper partials are
cutting, Jjarring, or braying; and also of the fact
that they are more penetrating and cannot readily
pass unobserved, for an intermittent impression ex-
cites our nervous apparatus much more powerfully
than a continuous one, and continually forces itself
afresh on our perception. On the other hand, simple
tones or compound tones which have only a few of the
lower upper partials, lying at wide intervals apart,
must produce perfectly continuous sensations in the
ear, and make a soft and gentle impression, without
much energy, even when they are in reality rela-
tively strong.2

As Helmholtz noted, beats produce a sensation of rough-
ness (jarring or shaking) in the ear. The degree of rough-
ness depends on (1) the number of cycles per beat, (2) the

component (or center) frequency % (xr + xs), and (3) the

2. Sensations of Tone, pp. 178-179. The expression ""com-
pound tone' means a complex tone.
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Figure 2. Decreasing roughness with increasing center fre-

quency and a constant 8.7 cycles per beat.

intensity ZVT;T; of the beats. Given constant intensity and
a constant center frequency in the middle range, the rough-
ness increases as the number of cycles per beat increases
from about 7.5 to 50. Like the number of cycles needed to
convey the sensation of tone,3 the number of cycles per beat
needed to give definite beats increases with the frequency;
therefore, the roughness of a given small interval ordinari-
ly decreases as its center frequency increases (Figure 2)
because the number of cycles per beat, being determined by
its size, does not increase as would be needed to keep the
same degree of roughness.

In an interval composed of complex tones, let x be the
frequency of the higher tone and y be that of the lower.
Also, let x° and y° be a pair of small relatively prime
integers with x° 2> y°. Then, if x/y = x°/y°, the relations
exist that are described in connection with D1 and D2 of
Chapter 1. 1If, to a slight extent, x/y > x°/y°, then
y°x > x°y, and the partial y°x of the higher tone is thus
seen to be a little higher than the partial x°y of the lower

tone. Furthermore, the frequency ratio of these two par-
t i l i o o o o
1SS s (v°x)/(x°y) = (x/y)/(x°/y°) B5

which shows that the interval between the two partials is

equal to the difference between the intervals x/y and x°/y°.

3. Stevens and Davis, Hearing, pp. 101-102.
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If this difference is small enough (£ 2.31 semitones), and
if the partials are of sufficient intensity, then beats are
heard at the rate of y°x - x°y per second when tones x and y
are sounded together.

Inasmuch as (2y°x)/(2x°y) = (y°x)/(x°y), the same in-
terval exists between the partials 2y°x and 2x°y, and beats
are heard between them too if their intensity permits; but,
since 2y°x - 2x°y = 2(y°x - x°y), these beats are twice as
fast as those between y°x and x°y. Likewise, beats may be
heard between 3y°x and 3x°y at the rate of 3(y°x - x°y) per
second. We see from this that y°x - x°y may appropriately
be called the fundamental rate of'beating of the interval
x/y and that the other rates of beating are integral multi-
ples of this. As may be observed in Table I, Ch. 1, the
higher partials are ordinarily weaker than the lower ones;
therefore, since the faster beats arise from the higher par-
tials, only the fundamental rate of beating is usually
noticed.

Recalling the rule given in Ch. 1, Sec. D, concerning
the coincidence of partials, and observing that the partial
tones that coincide when x/y equals x°/y° differ slightly in
frequency when x/y differs slightly from x°/y°, we see that
these beats result from the approximation of just intervals.
If slow enough, these beats are not necessarily disagreeable;
but they do betray proximity of the interval sounded to a
just interval and have doubtless influenced musicians, thru
a desire to avoid them, to prefer just intonation or, at
least, to regard it as the standard of correct intonation.
Tuning an interval by eliminating beats is a common prac-
tice, and it leads to a high degree of accuracy in perfor-
mance. Extensive use of beats is made in tuning pianos and
organs altho most of the intervals of the equally tempered

scale, being slightly '"out of tune," must be tuned so as to
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give rise to some degree of beating rather than to eliminate

beating altogether.

gi Modulation

The pulsations of the intertone resemble a vibrato in
that they consist of synchronous pulsations of both frequen-
cy and intensity (Ch. 1, Sec. H). They can be made to re-
semble a vibrato in yet other respects by the imposition of
appropriate conditions on the spectrum. Conformity to B3
makes the pulsations periodic, and setting At equal to .15
seconds places the rate of pulsation between 6 and 7 per
second. In addition to this, proper choice of the number,
intensities, and phase relations of the spectral tones es-
tablishes the extent and form of variation of both frequency
and intensity.

The similarity between the pulsations of the intertone
and a vibrato suggests that any tone performed with a vibra-
to is physically equivalent to a spectrum of steady tones.
This aspect of the vibrato was pointed out in 1931 by Shower
and Biddulph4 and given a fuller discussion in 1938 by Ste-
vens and Davis.5 It was easily demonstrated that a tone
with a constant frequency and a sinusoidally modulated
amplitude (that is, with an intensity vibrato) is physically
equivalent to three steady tones with a fundamental frequen-
cy difference equal to the rate of modulation. On the other
hand, it was found that a tone with a constant amplitude and

sinusoidally modulated frequency could only be approximated

by a finite number of steady tones. The following

4, '"Differential Pitch Sensitivity of the Ear,'" The
Journal of the Acoustical Society of America, vol. 3 (1931),
pp. 275-287.

5. Hearing, Chapter 9 and Appendix I.
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mathematical demonstration is pertinent.
n
E V. cos (P - P_)
—7 T r
r=1

n
= E V_(cos P_ cos P + sin P sin P)
3T r r

= v cos P+ w sin P by Al and AS
2 2
= V(cos P + sin P) by A2 and A4
=V C1
Likewise, n
2_V.sin (P - P) =0 c2
r=1
Cl can also be written
n
V=72V cos (P-P) C3
=T r
and differentiation results in
n
dv/dt = Z (Q. - Q)V_ sin (P - P_)
' =1 r by r
which, because of C2, simplifies to
_ n
dv/dt = Eil Qrvr sin (P - Pr) C4

To have frequency modulation without amplitude modulation
would require that V be constant, whence dV/dt would equal O,
but C2 and C4 cannot both be 0 at all times; therefore, a
spectrum of steady tones cannot give rise to frequency modu-
lation without amplitude modulation.

On the other hand, it is easily possible to have ampli-
tude modulation without frequency modulation. For example,
let n = 5 and let P = PS’ which has the constant derivative
Q,. Then, by C2,

3 5
gi Vr 51n(P3 - Pr) = 0

This is true at all times if the spectrum is balanced about

its central tone (r = 3), that is, if
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Vo = Yy
Vi = Vs
P, - P, = P, - P,
P, - P, = P, - P,

Then, by C3,

5
V = 2 V. cos (P, - P_)
=1 T 3 r

vV, + 2V4 cos (P4 - P3) + 2V

3 cos (P5 - P3)

5

In view of A23, C5 becomes
(Q3 = @)t * a3 = ag = (8 - Qz)t *+ qy - a3
Since this must be true at all times,
Q, - Q, =Q, - Q

95

CdS

C6

C7

C8

C9

C10

C11

Similar relationships regarding the first, third, and fifth

tones of the spectrum follow from C6.
The possibility of a tone with an intensity vibrato

having a spectrum of steady tones can be demonstrated in an-
other way. Let n = 3 and subtract x, from both sides of A22

2
making use of the fact that the denominator of the right

side of A22 is as given in Al10. The result is
X - X5 =

+ (X, + X

1 - 2x2)‘\/1113 cos (P3 - Pl)

NI, T

3 T XINIIg
This can be simplified by the introduction of B3, which

3

+ (x cos (P3 - Pz)]/I

means that - X, = X, - X, = 1/At

[(x1~ x2)I1 + (x3— x2)13 + (xl~ xz)'\/Ill2 cos (P2

..pl )

Ci2

C13

Cl14
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and, in place of Cl2, gives us

13— Il+‘V1213 cos (P3— P2) - 1/1112 cos (P2~ Pl)

X = X, + C15
IAt

To complete this demonstration, we set 13 = I1 and

P3 - P2 = P2 - Pl’ Then x = Xg, which is constant, and the

vibrato affects only the intensity.
Comparable results are obtained when the spectrum con-

sists of only two simple tones. From AlO and A22 with n = 2

and Xg = X4 T 1/At,

x = x; + [T, + VTITE cos (P,~ Py)1/(IAt) cle
= x, - [1; + 4TI, cos (Py= P1)]/(18t) c17
= (xq + x5)/2 + (I, - I)/(218%) c18

Setting I2 = I1 is sufficient to make x = (x1 + xz)/z, a
constant, restriction of phase being unnecessary.
This condition also makes

2 1112 = 211 = I1 + I2 = H C19

I =HI[1+cos (Py = Py)] C20

which means that, in this case, I reaches a maximum of 2H
and a minimum of 0. The intensity of the intertone cannot
reach a maximum greater than twice its average or a minimum
less than zero; therefore, for a certaln average intensity
of the intertone, the strongest beats are obtained when

I_ = I.. This is the condition commonly referred to as

2 1
"nest beats."

D. Aural Harmonics and Combination Tones

Steady tones of sufficient intensity generate an aural
response of four classes of tones distinguished by their
frequency relations. The frequencies of the first class

(primary tones) are identical to those of the generating
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tones (or generators), the frequencies of the second class
(aural harmonics) are multiples of those of the first class,
the frequencies of the third class (difference tones) are
differences between those of the first and second classes,
and the frequencies of the fourth class (summation tones)
are sums of those of the first and second classes. A com-
bination tone is a tone of the third or fourth class. The
entire assemblage of tones contained in the response of the
ear constitutes what we call the aural spectrum, and the
tones thereof are called spectral tones or response tones.
The aural harmonics and combination tones were formerly re-
ferred to as subjective tones; but the explanation as to how
the ear produces them rests on purely physical grounds;
therefore, the term ''subjective' is no longer favored for
such tones. They will be referred to here as secondary tones
to distinguish them from the primary tones.

Let us now consider the aural responses to one or two
pure tones. Responses to complex tones will be considered
later. One pure tone of frequency x generates a primary tone
of frequency x and aural harmonics of frequencies 2x, 3x, and
so forth. A pure tone by itself does not generate combina-
tion tones. Two pure tones of frequencies x and y, with
x > y, generate two primary tones of frequencies X and y;
aural harmonics of frequencies 2x, 2y, 3x, 3y, ..., differ-
ence tones of frequencies x -y, 2y - x, 2x -y, 2x - 2y,

.; and summation tones of frequencies x + y, 2y + X,
2x +y, 2x + 2y, .... These constitute all the classes of
tones in the aural spectrum.

Not only are the spectral tones identified by the alge-
braic expressions for their frequencies, but also degrees of
relationship of these tones to the generators can be seen in
these expressions. The primary tones can be said to be in

the first degree of relationship, or they can be called tones
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Table I

Aural Spectrum Generated by Two Pure Tones

The algebraic expression for the frequency of a spectral
tone not only indicates its frequency, class, and degree but
also uniquely identifies the relationship of the individual
tone to the generators.

1. Primary Secondary tones
tones
2. Aural Combination tones
harmonics
Degree 3. Difference{4. Summation
tones tones
1
2 2X X -y X ty
2y
3 ‘ 3x 2y - X 2y + X
3y 2X -y 2x +
4 4x 2x - 2y 2x + 2y
4y 3y - X 3y + X
3x -y 3x +

of the first degree because their frequencies are identical
to those of the generators. The degree of an aural harmonic
is given by the coefficient of x or y, and the degree of a
combination tone is given by the sum of the coefficients of
x and y. For example, 2x - y identifies a tone of the third
degree because the coefficient of x is 2, that of y is 1,
and their sum is 3. Table I shows the spectral tones thru
the fourth degree that are generated by two pure tones of
frequencies x and y.

Some of the tones of the aural spectra of the major

sixth and the major third in Jjust intonation (frequency
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Figure 3. Some of the tones of the aural spectra generated

by pure tones of frequencies x and y in the intervals of the
major sixth and the major third. The white notes represent
the primary tones; the black notes, the secondary tones.

ratios 5/3 and 5/4) are shown in Figure 3. Both spectra
have the frequency ratios of the harmonic series, but they
arise from different stimuli and are known to sound differ-
ent. We conclude, then, that they must have different loud-
ness profiles. Differences in phase relations must also
exist, but we can expect them to be relatively unimportant.

The loudness profile of an aural spectrum consists of
the relative loudnesses of the tones of the spectrum. It is
essentially a description of an auditory sensation, but only
limited knowledge of a loudness profile can be obtained by
direct observation. The hearing can easily recognize that
one spectrum is different from another without being able to
give a detailed description of either.

In order to supplement the testimony of the unaided

ear, recourse has been had to an exploring (or auxiliary)

tone, that is, a pure tone whose frequency, intensity, and
phase can be varied and controlled so as to seek out and
match or approximate any tone of a spectrum. When the fre-
quency of the exploring tone matches or approximates that of
a spectral tone, the observer can use the effects of inter-
ference so as to match or approximate the intensity of the

spectral tone. The intensity of the exploring tone is then
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indicative of or equal to that of the spectral tone.
Applying this procedure to all the tones of a spectrum gives
us what we can call the intensity profile of an aural spec-
trum.

Table II presents an intensity profile obtained by
Chesney R. Moe,6 who had an observer adjust the intensity of
an exploring tone until it produced the "best beats”7
against a spectral tone and then assumed the intensity of
the exploring tone to equal that of the spectral tone. The
generators were practically pure tones of 950 and 690 cps,
creating an interval of 5.54 semitones. Comparison of Table
II with Table I shows that the aural harmonics and differ-
ence tones of lower degree have the greater intensity. The
summation tones are weaker and less regular.

The experimental findings of many investigators8 re-
garding loudness and intensity relations in an aural spec-
trum generated by two pure tones are summarized below:

1. The primary tones are louder than the secondary tones.

2. Secondary tones of a given class and a given degree (not
necessarily the same as the class) have approximately the
same intensity.

3. Among secondary tones of a particular class, those of the
second degree are stronger than those of the fourth degree,
those of the third degree are stronger than those of the
fifth degree, and those of any degree are stronger than
those of higher degrees when the generating tones are not

too intense.

6. "An Experimental Study of Subjective Tones Produced With-
in the Human Ear," The Journal of the Acoustical Society of
America, vol. 14 (1942), pp. 159-166.

7. See the end of Section C.

8. Helmholtz, Fletcher, Stevens and Davis, Moe, Plomp, and
others cited by these.
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Table II

Intensity Profile of an Aural Spectrum
Generated by two Pure Tones

The height of a tone in the column corresponds to its inten-
sity level. Two tones of the same intensity are separated
by a comma. (Adapted from Moe)

Inten- 1. Pri- | 2. Aural 3. Difference | 4. Summation
Ssity mary harmonics tones tones
level tones
in db
90
X,y
85
80
75 X -V
70 2x 2x -y
2y - X
65 2y, 3x
3y 3y - X 2x + y
60 3x -y 2y + X
2x - 2y
4x
55 4y
4v + X
X + vy, 2x + 2y
50 4y - x 3x +y
4x -y 3y + X
5x, dy
45 3x - 2y
4x + y
3x + 2y
40 3y + 2x
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4. Among secondary tones of a particular degree, difference
tones are stronger than aural harmonics and summation tones.
5. Increasing the intensity of the generating tones increases
the intensity of the spectral tones; and, when such an in-
crease occurs, the increase of the secondary tones is pro-
portionally greater than the increase of the primary tones.
6. Pure tones must have intensity levels of about 50 db or
greater to generate detectable secondary tones.

7. Difference tones are less easily heard when they lie be-

tween the primaries.

E. Aural Responses to Complex Tones

The partials of a complex tone present the ear with
many generating tones; but, like one pure tone of sufficient
intensity, a complex tone generates an aural spectrum all of
whose frequencies are multiples of the fundamental, for the
simple reason that the generators themselves are multiples
of the fundamental. The partials of a complex tone of fre-
quency x generate the aural spectrum shown in Table III,. In
the expression for the frequency of each spectral tone, the
frequency of a partial is placed in parentheses when it is
multiplied by a number other than 1, in order to preserve
its identity as a generator and to make the degree of the
tone visibly evident. As expected, all the expressions for
the frequencies of tones of the second and third degrees
simplify to first-degree expressions, that is, to multiples
of x.

Not all of the partials enter into the generation of
every response tone. A primary tone or an aural harmonic
has one generating tone. The number of tones that act to-
gether to generate one combination tone is at least two but
not greater than the degree of the tone. Thus, in Table III,

two partials generate a combination tone of the second
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Table III
Aural Spectrum Generated by a Complex Tone
The frequency of a partial is placed in parentheses when it

is multiplied by a number other than 1. All the tones in a
line have the same frequency.

Degree
1 2 3
X | 2x - x, 3Xx - 2x, 4x - 3x | 3x - 2(x), 2(2x) - 3x
2x 2(x), 3x - x, 4x - 2x X - 2x + 3x, x + 4x - 3x
3x | 2x + x, 4x - x, 5x - 2X 3(x), 2(2x) - x, x + 4x - 2x

4x 2(2x), 3x + x,
o5x | 3x + 2x, 4x + x, 6x - X 2(3x) - x, 2(2x) + x

6x 2(3x), 4x + 2x, b5x + X 3(2x), x + 2x + 3x

59X - X 2(3x) - 2x, 2x - x + 3x

3

degree, and two or three partials enter into the generation
of a third-degree combination tone.

There are many frequencies in the spectrum besides
those shown in Table III, and there are many tones at each
frequency. Since several tones sounding together at the
same frequency form effectively Jjust one tone, this dupli-
cation of the frequencies of partials can compensate to some
extent for weak or missing partials. If the first partial
were missing, its frequency could be supplied not by a pri-
mary tone but by the difference tones 3x - 2x and 2(2x)- 3x.
This might help explain why the ear can hear the pitch asso-
ciated with a complex tone even when the fundamental is weak
or missing (Ch.1, end of Sec. C).

The aural spectrum generated by two complex tones
sounding together is composed of the same frequencies as
that generated by two pure tones of sufficient intensity;

but, as in the spectrum of a single complex tone, tones of

)
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higher degree duplicate the frequencies of tones of lower
degree. Let x be the frequency of the higher generating
tone and y be that of the lower. Then the frequency of a
spectral tone can always be represented in the form mx + ny,

where m and n are integers one of which may be zero or nega-

tive. If n = 0, m is positive and the frequency is a multi-
ple of x as in Table III. If m = O, n is positive and the
frequency is a multiple of y. If neither m nor n is O, the

tone is a combination tone and therefore of at least the
second degree. The values of m and n thus divide the aural
spectrum into three distinct parts: one that results from
the action of the higher complex generator, one that results
from the action of the lower, and one that résults from the
combined action of both generating tones.

The index of a tone is the numerical sum of m and n,
which is written as |m|+in] and is not necessarily equal to
the degree. For example, the generating tones of 2(2y) - X
are x and 2y, its degree is 3, m = -1, n = 4, and its index
is 5. Table IV shows a number of combination tones classi-
fied according to index and degree. All the tones in a line
have the same frequency and, sounding together, are heard as
one effective tone. The expressions for the frequencies of
the third-degree tones reduce to second-degree expressions,
that is, to expressions combining a multiple of X with a
multiple of y.

Figure 4 shows the spectral tones with indexes less
than or equal to 6 in a continuum of intervals extending
from the unison thru increasingly larger intervals to one of
infinite size. In this figure, the ordinates measure fre-
quency; the abscissas, points along the continuum. The
higher tone remains at the same frequency throughout; the
lower tone starts at the same frequency as the higher tone

and descends thru all intermediate frequencies to zero.
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The frequency
is multiplied
line have the

Table IV

Combination Tones Generated by the
Joint Action of Two Complex Tones

of a partial is placed in parentheses when it
by a number other than 1.

same frequency.

Degree
Index
2 3
2 Xty 2x - x ty, xt (2y - Y)
3 2y + x 2(y) + x, 3y -y £ x, 2y + (2x - X)
2x + 2(x) +y, 3x - xXx+ty, 2x + (2y - y)
4 2x + 2y 2(x) + 2y, 2x + 2(y), 3x - X + 2y
3y + x y + 2y + x, 3y + (2x - X)
3x + X +2x +y, 4X - x t ¥y
5 3y + 2x 3y + 2(x), vy + 2y + 2x
3x + 2y 3x + 2(y), x + 2x + 2y
4y + 2(2y) £+ x, vy + 3y tx
4x + 2(2x) +y, x + 3x +
6 3x + 3y X + 2x + 3y, 3x + (y + 2y)
4y + 2x 2(2y) + 2x, 4y + 2(x), y + 3y *+ 2x
4x + 2y 2(2x) + 2y, 4x + 2(y), x + 3x + 2y
o2y + X 2y + 3y + x, y + 4y + X
oX t y 2x + 3x + y, x + 4x +

Here we see the aural response to the acoustic stimulus

pictured in Figure 3, Ch. 1, Sec. D;

stimulus to response, we observe a r

the number of spectral tones and in the number of intervals
that attract attention by the coincidence of spectral tones.

There were twelve such intervals;

and, in passing from

emarkable increase in

now there are twenty-three.

All the tones in a
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The frequency ratios of the eleven new intervals are 7/5,
7/4, 7/3, 8/3, 7/2, 9/2, 7/1, 8/1, 9/1, 10/1, and 11/1. Of
these, the ratios containing 7 in the numerator are not com-
monly recognized as being musically significant or desirable
but perhaps should be.

Some difference tones vanish at certain ratios of x to

y. In such a case, this means that mx + ny = 0 when

X/y = -n/m, a commensurable ratio inasmuch as m and n are
integers. Let x° and y° be the smallest positive integers
that can express this ratio of x to y. Then

m/y° = -n/x° =k, a + integer. If k =1, m=y°, n = -x°,
and the frequency of the difference tone is y°x - x°y > 0
when x/y > x°/y°. If k = -1, m = -y° n = x°, and the fre-

quency of the difference tone is x°y - y°x > 0 when

x/y < x°/y°. These two difference tones are called alter-
nate difference tones here and each has a positive frequency
in its proper range of x/y. This can be seen in Figure 4,
where the tone 3y - 2x > 0 when x/y < 3/2, vanishes when

x/y = 3/2, and is replaced by its alternate 2x - 3y when

x/y > 3/2.

F. Loudness Profile of the Typical Aural Spectrum

The typical aural spectrum is defined here as the aural
spectrum generated by two typical musical tones of equal in-
tensities sounding together, and the typical musical tone is
characterized here as having a limited number of audible
partials such that higher partials are weaker than lower
ones. Let N be the number of audible partials; then N is
also the number of the highest (and weakest) audible partial.
The number of a partial of frequency rx is r, and the partial
will be considered significant when 1 < r < N and negligible
when r > N. Table I, Chapter 1, roughly indicates that, on

the average, each partial is 6 decibels weaker than the one
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immediately preceding it in the harmonic series., Thus, if
ILr is the intensity level of partial r and ILN is that of

partial N, IL, = ILg + 6(N - 1) F1

Likewise, the number of a partial of frequency sy is s, and
its intensity level is

IL, = ILy + 6(N - s) F2

To equate the intensities of the two generating tones, it is
sufficient to specify that
IL = IL_ when r = s, F3
r S

Let the ear be presented with a harmonic interval soun-
ded by two typical musical tones. Then assembling the aural
responses to all the partials taken two at a time is suffi-
cient to determine all the frequencies in the aural spectrum.
We now adopt the hypothesis that assembling the contributions
to the aural spectrum of all the partials taken two at a time
is also sufficient to determine the approximate or probable
intensity relations among all the tones of the aural spec-
trum. On this basis, the rules at the end of Section D re-
garding loudness and intensity relations iéugural spectrum
generated by two pure tones of equal intensity can be used
to determine the probable intensity relations in the typical
aural spectrum. In this application, Rules 2 and 5 can be
combined to the effect that, given different response tones
of the same class and the same degree, those generated by
stronger partials are louder than those generated by weaker
partials. Furthermore, with the encouragement of Rules 1
and 3, we shall associate greater loudness with lower degree
and disregard spectral tones of greater than the third
degree.

The frequency of a primary tone or an aural harmonic
generated by a partial of frequency rx equals

f = a(rx) = (ar)x F4
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where a = 1, 2, or 3 = the degree of the tone.

3 b

The index is m = ar 2 a F5
Inasmuch as the index multiplies the number of the partial
by the degree of the tone, it relates directly to the loud-
ness of the response tone in such a way as to be smaller
when the tone is louder and larger when the tone is softer.
The frequency of a summation tone generated by partials

of frequencies rx and sx (r * s) equals

f = a(rx) + b(sx) = (ar + bs)x F6
where a = 1 or 2, b =1 or 2, and a + b = 2 or 3 = the
degree of the tone. The index is m = ar + bs > a + b F7

and relates to the loudness of the tone in essentially the
same way as in the case of the aural harmonic.

The frequency of a difference tone generated by partials

rx and sx is f = a(rx) - b(sx) = (ar - bs)x > O
or b(sx) - a(rx) = (bs - ar)x > 0 F8
where, as before, a + b = the degree of the tone.

The index is m = ar - bs < ar + bs

or bs - ar < ar + bs F9
but, because of the minus sign, it does not relate to the
loudness in the same way as in the previous case. However,
by being smaller than the index of a summation tone of the
same degree generated by the same partials, it does reflect
the greater loudness of the difference tone (Rule 4).

The frequency of a combination tone generated by par-

(ar)x + (bs)y
(bs)y + (ar)x Fi10

and the index is

tials rx and sy is f = a(rx) + b(sy)

or b(sy) + a(rx)
The degree is a + b, m = + ar, n = + bs,
m] + [nj= ar + bs 2 a + b F11
Once again, the index relates to the loudness of the tone in
such a way as to be smaller when the tone is louder and
larger when the tone is softer.

When the generating tones are complex, different
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spectral tones may have equal frequencies whatever values
are given to x and y. Such tones are said to have identical
frequencies, or one is said to duplicate the frequency of
the other. When the expressions for the frequencies of such
tones are reduced to the form mx + ny, they all have the
same values of m and n. It follows that spectral tones with
identical frequencies have equal indexes and that the effect-
ive tone resulting from their union has their common index.
Examples appear in Tables III and IV and are not to be con-
fused with the coinciding tones of Figure 4, where different
effective tones have equal frequencies only at certain
ratios of x to y.

The intensity of an effective spectral tone is usually
the sum of the intensities of the component simple tones,

but its intensity level is practically that of the strongest

component tone. Since the intensity level (or loudness) of
this tone must be related to its index in the usual way, and
since its index is identical to that of the effective tone,
it foilows that the loudness of an effective spectral tone

is related to its index in the usual way. As a convenient
approximation, then, we say that the loudness of an effective
spectral tone generated by typical musical tones is usually

greater for smaller indexes and less for greater indexes.

gi Masking

When two pure tones of approximately the same frequency
but not so close as to produce beats are sounded together,
the perceived loudness of one is affected by the presence of
the other. If one of the tones is made louder than the
other, the loudness of the other is diminished even tho its
intensity remains the same. 1In fact, making one of the tones
sufficiently loud will render the other completely inaudible

in its presence. This phenomenon is called masking, and the
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tone whose loudness is diminished by the presence of the
other is said to be masked by the other.

A pure tone of great enough intensity to generate aural
harmonics masks another, weaker tone at frequencies not only
near its own but also near those of its harmonics and some-
what less in the intervals between the harmonics. Thus,
when two tones are widely separated in frequency, the lower
will often mask the upper but the upper may not be able to
mask the lower.

When two tones are brought closely enough together in
frequency to create beats, one cannot mask the other because
the hearing process no longer separates the two. It rather
hears only one modulated tone, which is an equally valid
physical interpretation of the fact as has been shown. One
tone does not mask itself.

Generally speaking, the stronger partials fall at the
lower frequencies in the spectrum of an interval composed of
typical musical tones. This doubtless works in cooperation
with the effects of masking to render some of the higher
spectral tones inaudible in the sense that, even tho they
may be physically present in the ear, the listener cannot
directly detect their presence. It is impossible and
unnecessary to draw an exact line of demarcation between the
consciously audible and inaudible tones of the aural spec-
trum of an interval. It is enough to know that masking
discriminates against the weaker and higher tones of the
spectrum, thereby intensifying differences already found to

exist therein.
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THE AURAL SPECTRA OF COMMENSURABLE INTERVALS

A. Fundamental Aspects

As in the preceding chapters, x and y are the respec-
tive frequencies of the higher and lower generating tones of

an interval. Accordingly,

X

v

y > 0 Al

A commensurable interval is an interval in which the ratio
of x to y is commensurable, as explained in Chapter 1, Sec-
tion D. When the interval is commensurable, x and y have a
greatest common measure (Or divisor), which is designated
here by g. Letting x° and y° be the smallest positive inte-

gers that can express the ratio of x to y, we note that

x° = x/g = a positive integer A2
y° = y/g = a positive integer A3
x/y = x°/y° = a rational number Ad
y°x = X°y A5
x> 2vy° >0 AB

o

Having 1 as their greatest common divisor, x° and y° are
said to be relatively prime.
Let f be the frequency of any tone in the aural spec-

trum of an interval; then
f = mx + ny A7

where m and n are the coefficients of the tone, m being the
coefficient of x and n being that of y. For example, in the
tone 3x - y, m equals 3, and n equals -1; and, in the tone
5y, m equals O, and n equals 5. Either m or n may be zero
or negative, but not both; at least one coefficient must be

positive in order for the spectral tone to have a positive
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frequency.
The frequency number of mx + ny is

o

f° = mx° + ny A8
whence

f =1f°g A9
The higher arithmetic teaches that, when x and y are given,
integral values of m and n can always be found such that f
can be any multiple of g and that there can be any number of

spectral tones at every such frequency. Transforming A8 to

n = (f° - mx°)/y° A10

shows that it is equivalent to a linear congruence to the
modulus y° and can be solved for m and n by choosing from
any y° consecutive integers the one value of m that makes

£f° - mx® a multiple of y°. Since m can be chosen from any
y° consecutive integers, there are infinitely many solutions
for any given value of £f°. Inasmuch as f can be any multi-
ple of g, we recognize that the frequency number equals the
number of distinct frequencies in the spectrum starting with
g and ending with f.

An effective tone (often referred to simply as a tone)
of the aural spectrum of an interval is completely identi-
fied when the coefficients m and n are each given a value,
and different effective spectral tones are distinguished by
different values of the coefficients. Because of this
unique relationship, m and n are used as coordinates to plot
the aural spectrum of a given interval.

x and y determine the frequencies of the spectral
tones; and, when the ratio of x to y is commensurable, they
determine g, x°, y°, and the frequency numbers f°. Commen-
surable ratios are the object of investigation here, and
actual frequencies are of little or no interest; therefore,

each plot is identified with specific values of x° and y°
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and displays values of f° even tho equations are expressed
in terms of x, y, and f when possible in order to gain
greater generality.

In order to plot the aural spectrum of an interval, the
author empolys a network of lines that provides rows and
columns of squares or rectangles in which to display the
values of f° corresponding to the tones of the spectrum.
Consecutive values of m and n are assigned respectively to
the columns and rows of the network. Then each rectangle,
standing at the intersection of a column and a row, has a
value of m and a value of n; and f° is calculated for the
rectangle by AS8.

For the sake of convenient terminology, let the complex
tone whose frequency is X be designated by capital X, let
the tone whose frequency is y be designated by capital Y,
and let the effective tones of the aural spectrum be named
according to the spectral tones of lowest degree or the
generating tones that have their frequencies. Thus, effec~
tive spectral tones whose frequencies are multiples of x are
called partials of X, those whose frequencies are multiples
of y are called partials of Y, and those whose frequencies
combine a multiple of x with a multiple of y are called
either summation tones or difference tones. As is shown in
Plot 1, partials of X appear in the row n = 0, partials of Y
appear in the column m = 0, summation tones appear in the
first quadrant, and difference tones appear in the second
and fourth quadrants. No tones lie in the third quadrant,
where both m and n are zero or negative, because f° must be
positive. Plot 2 presents a numerical example.

In order to simplify the mathematical descriptions, the
quadrants are permitted to overlap, that is, to include the
adjoining partials. Thus, the first quadrant embraces all

the partials as well as the summation tones, the second
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quadrant takes in the partials of Y along with the difference
tones in which m is negative, and the fourth quadrant in-
cludes the partials of X with the difference tones in which

n is negative. No difficulty arises from the double classi-
fication of the partials, that is, the inclusion of the par-
tials of Y in the first and second quadrants and the partials
of X in the first and fourth quadrants. Five special expres-
sions for the loudness index G are shown in Plot 1, but only
three (for the first, second, and fourth quadrants) are

needed when overlapping of the quadrants is permitted.

B. The Loudness Index

The loudness index (or simply index) of a spectral tone
is the numerical sum of its coefficients. Let this be desig-

nated by G. Then the index of mx + ny 1is
G = |m|+ |nj Bl

As found in Section F, Chapter 2, the index is inversely in-
dicative of the relative loudness, a larger index indicating
a weaker tone, and a smaller index indicating a stronger
tone. Thus, the index makes it easily possible to rank the
spectral tones according to their relative loudness. Plot 3
shows all the spectral tones that have a given common index
of 6.

The general formula Bl is sufficient for the direct
calculation of G from given values of m and n, but the fol-
lowing special formulas for the different quadrants are
needed to simplify expressions that interrelate f and G.

For all partials and summation tones, which are in the

first quadrant, neither m nor n is negative and
G =m+ n B2

Eliminating first n and then m between A7 and B2 results in
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x° =7, y° =5 G =26 Plot 3.
7
6 30
5 18 32
4 6 34
3 36
2 38
1 40
On 42
-1 30
-2 18
-3 6
-4
-5 m
-3 -2 -1 0 1 2 3 4 5 6 7
f = m(x - y) + Gy B3
= Gx - n(x - y) B4
and, since x -y 2 O,
Gy ¢ f £ Gx B5

From this, we draw the rule that the summation tones for
given values of x, y, and G lie between the partials Gy and

Gx.
For partials of Y and difference tones in the second

quadrant, m < 0 and
G=n-m B6

Combining this with A7 results in

f

Il

m(x + y) + Gy B7
n(x +y) - Gx B8
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Since f > 0, these equations lead to the following inequali-
ties:

-Gy/(x + y) < m 0 B9

{1/AN

Gx/(x +y) <n <G B10O

For partials of X and difference tones in the fourth
quadrant, n < 0 and
G =m-n B1l1

Taking this together with A7 results in

f =m(x +y) - Gy B12
= n(x + y) + Gx B13
and, since f > O,
Gy/(x +y) <m £ G B14
-Gx/(x + y) <n <0 B15
Let us consider the frequency relations that exist when
G is constant. In the first quadrant, when m increases by
1, n decreases by 1, and f increases by x - y. In the second

and fourth quadrants, when m increases by 1, n increases by
1, and f increases by x + y. Thus, when G is constant, f
always increases when m increases, and, since G is the maxi-
mum value of m, the partial Gx is the highest spectral tone
with a given index G.

It is equally true that f decreases when m decreases;
but there are two minimum values of m, hence f, one in the
second quadrant and the other in the fourth. In both of
these quadrants, f decreases by x + y when m decreases by 1;
but the least value of m is determined by the requirement
that f be greater than O0; therefore, both minimum frequen-

cies with G constant conform to the rule that
0 <f <x+y B16

The frequency range thus established, which incidentally
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includes the lowest summation tone, is referred to here as
the basic range of the aural spectrum, and the tones in this

range may be called minimum-frequency tones. See Section I.

C. Pairs of Spectral Tones

As given in Section A, m and n are the coefficients of
any tone in the aural spectrum of an interval, f is its fre-
quency, and f° is its frequency number. Let m' and n' be
the coefficients of another tone of the spectrum, let f' be
its frequency, and let f'° be its frequency number. Then

f' =m'x + n'y C1
and
f'° = m'x°® + n'y® C2

Subtraction of Cl from A7 gives the difference between

the frequencies of the two tones:

f-f'"=(m~-m'")x - (n' - n)y C3

and subtraction of C2 from A8 gives the difference between

their frequency numbers:

f° - f'"°= (m - m')x° - (n' - n)y° C4
C4 transforms to

n' - n=[(m-m")x° - (£°-£'°)]/y° C5

which can always be solved for integral values of m - m' and

n' - n whatever integer f° -f'° may be.
If £f° > £'°, n' - n < (m - m')x°/y° C6
If f° < £'°, n' - n > (m - m')x°/y° C7
If f° = £'°, n' - n = (m - m')x°/y° C8

These relations are illustrated in Plot 4, where the tones
9y - 3x, 4y, 3x - y, and 6x - 6y all have a frequency number
of 12, and the lines joining these tones separate the tones

that are lower than these from those that are higher. It is
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Plot 4. x° =5, y° =38
''= -3, n' =
£f'° = 12 ’
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-6 12
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helpful to compare this plot with Plot 2, which has the same
ratio of x to y.

When the tones coincide, f° = f'° and it is clear from
C8 and the relative primality of x° and y° that m - m' must
be a multiple of y°. Let this multiple be represented by k;

then
m-m' = ky° C9

n' - n = kx° C10

and it is seen that k is the greatest common divisor of
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m - m' and n'- n. When the coefficients of two tones in the
spectrum of an interval satisfy C9 and C10, then, by C3 and
A5

same. Thus, mx + ny = m'x + n'y when, and only when, C9 and

, £ - f' =k(y°x - x°y) = 0, and their frequencies are the
Cl1l0 are satisfied.

k can be any integer, but we are not interested in the
trivial case that results when k = 0, and we observe that
the distinction between positive and negative values of k
only involves the question as to which of two tones is iden-
tified as mx + ny while the other is designated as m'x + n'y.
Because of this, we may and usually do limit k to being posi-
tive. The coinciding tones are said to be adjacent when
k =1,

Recalling A6, C9, and Cl1l0, and letting k be positive,

we get
n'- n 2 m - m' > O Cil1

m'+ n' 2 m + n Cl2
m > m' and n' > n C13

Plot 5 illustrates the significance of these relations for
all intervals that satisfy Al by showing the areas where all
tones of the same frequency as 3x - y must lie. If this
tone is interpreted as mx + ny, then other tones of the same
frequency lie in the area identified with m'x + n'y, where
m' < 3 and m'+ n' > 2, If 3x - y is interpreted as
m'x + n'y, then other tones of the same frequency lie in the
area identified with mx + ny, where m > 3 and m + n £ 2.
Attempting to equate the frequency of a tone outside both of
these areas to 3x - y results in a violation of Al.

C9 and C1l0 can be used to determine the ratio of x to y
at which two given tones will coincide. As an example, let

us take the two tones presented in the second paragraph of
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Plot 5. Significance of C12 and C13
7
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5 -
4
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O n
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-4 if gny mx H ny
-5
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Section A, When they coincide, 3x - y = Jy, whence, respect-

ing C12 and C13, m' = 0, n' =5, m =3, n = -1
n'" -n=6, m-m"'" =3, k=3
xX° =2, y° =1
and, by A4, x/y = 2/1

which is the only ratio of x to y at which 3x - y will coin-
cide with 5y. This coincidence can be seen at the frequency
of 300 in Figure 4, Chapter 2.

Furthermore, when x°, y°, and k are given, C9 can easily be
solved for m' as a function of m or for m as a function of
m', and C10 can be solved for n' as a function of n or for n
as a function of n'. By varying k, then, we can also use

C9 and C10 to find tones in the spectrum of a given interval

that coincide with a particular spectral tone. This is
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exemplified in Plot 4, which shows tones that coincide with
9y - 3x when x/y = 5/3.

When the coinciding tones are assigned to specific
quadrants in conformity to Cl1l2 and C13, then six cases col-
lectively containing all possible coincidences arise. These
are identified by two-digit case numbers, the first digit
indicating the quadrant occupied by m'x + n'y, and the
second digit indicating the quadrant occupied by mx + ny.
For example, Case 21 places m'x + n'y in the second quadrant
and mx + ny in the first. The six cases are 21, 14, 11, 22,
44, and 24. No others are needed to account for any

coincidences.

D. The Indexes of Coinciding Spectral Tones

The loudness index of mx + ny is defined by Bl,; that of
m'x + n'y is
G' = |n'l +|m'| D1
The forms that G takes in the different gquadrants are pre-
sented in B2, B6, and Bll. The forms that G' and G take in

the six cases of coinciding tones are tabulated below:

Case G' G
21 n' - m' m + n
14 n' + m' m - n
11 n' + m' m + n D2
22 n' - m' n - m
44 m' - n' m - n
24 n' - m' m - n
Adding C9 to Cl0 results in
k(x° + y°) =n' - m' +m - n D3

subtracting C9 from Cl1l0 gives

k(x° - y°) = n'" +m' - m - n D4
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and comparing these with the preceding expressions for G'

and G discloses the following relationships:

Case 21. G' - G+ 2m' = k(x° - y?) D5
G' - G+ 2m = k(x° + y°) =G' + G - 2n D6

Case 14, G' - G- 2n = k(x° - y%) D7
G-G'" +2n'" = k(x° +y°) =G'" +G - 2m' D8

Case 11. G' - G = k(x° - y°) D9
G' -G+ 2(m-m') = k(x° + y°) = G'+ G- 2(m'+ n) D10
Case 22, G' - G = k(x° + y%) D11
Case 44. G- G' = k(x° + y°) D12
Case 24. k(x° + y°) = G' + G D13

In all cases, the quantities k, x°, y°, G, and G' conform to

the rule that

IG'- Gl < k(x° + y°) < G' + G D14

where k(x° + y°) must differ from |G'- G| or G' + G or both
by an even number; and any set of these quantities that con-
forms to this rule can be identified as to case and used in
solving for one or more corresponding sets of coefficients
0of coinciding spectral tones.

Case 21. Inasmuch as m' £ O, D5 shows that
G' - G 2 k(x°* - y°) D15

which identifies the case and, since x° 2> y°, indicates that
G'- G = |G'- Gl . Because of this and the fact that m and n
are greater than or equal to zero, D6 demonstrates conform-
ity to D14. Furthermore, D6 determines m and n uniquely,
and m' and n' can be obtained from these by means of C9 and
Cl10. This assures that the two tones will have the same
frequency, which can only be positive because mx + ny is in
the first quadrant.

Case 14. Since n £ 0, D7 shows that

G'- G < k(x° - y°) D16



Sec. D 83

which contrasts with D15 and distinguishes Case 14 from Case
21 as long as the related quantities are not equal as in D9.
Inasmuch as m' and n' are greater than or equal to O, D8 and
D16 together exhibit conformity to D14. Furthermore, D8 can
be solved for m' and n', and these used in C9 and Cl10 deter-
mine m and n so that mx + ny = m'x + n'y > 0,
Case 11. D9 identifies this case and shows that

G'- G = |G'- G|. This together with C11, D10, and the fact
that m' and n are not negative assures us of conformity to
D14, In this case, D10 does not uniquely determine a pair

of coefficients, but it does give
m' +n=[G'+ G- k(x°+ y°)]/2 D17
which, by D9, simplifies to

m' + n=G"'- kx° = G - ky° D18

Since m' > 0 and n > O, it follows that m' can be any inte-
ger that satisfies
0 <m" < G'- kx° D19

and n=GG"'- kx° - m' D20

C9 and C10 then use m' and n to determine m and n' such that
the two tones have the same positive frequency.

Cases 22, 44, and 24. Equations D11, D12, and D13
identify their respective cases and conform to D14, but they
do not determine coefficients. Therefore, a solution for a
set of coefficients must be initiated by choosing a coef-
ficient. Then C9, Cl10, and the appropriate equations in D2
may be used to solve for the three remaining coefficients of
the set. The choice of a coefficient cannot be purely arbi-
trary, however. 1In order to ensure positive frequencies and
conformity to the limitations of magnitude imposed by the
indexes, B9, B10, Bl14, B15, and their following application

to m'x + n'y must be satisfied by the coefficients that are
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to be determined.
When m'x + n'y is in the second quadrant, B9 and B1O

give

-G'y/(x + y) < m' 0 D21

A

G'x/(x +y) <n' £ G' D22
When m'x + n'y is in the fourth quadrant, B1l4 and B15 give

G'y/(x + y) < m' G' D23

/AN

-G'x/(x + y) < n' 0 D24

A

B9 and B10 are consistent with B6 in that, if m and n are
related as in B6, and if m satisfies B9, then n satisfies
B10, or if n satisfies B10, then m satisfies B9. In the
same way, Bl4 and B15 are consistent with B11l, D21 and D22
are consistent with G' = n'- m', and D23 and D24 are consis-
tent with G' = m'- n'.

In Case 22, it is necessary to satisfy B9, B10, D21,
and D22; and, to do this, it is sufficient to satisfy B9 or
B10. Substituting m'+ ky° for m in B9 and simplifying with
the aid of D11 results in

-G'y/(x +y) <m' £ -ky°®
which satisfies D21. Substituting n'- kx° for n in B10 and
simplifying results in

G'x/(x +y) <n' £ G'- ky®
which satisfies D22.

In Case 44, it is sufficient to satisfy D23 or D24.
Substituting m - ky° for m' in D23 and simplifying with the
aid of D12 results in

Gy/(x + y) <m £ G - kx°

which satisfies B14. Substituting n + kx° for n' in D24
results in -Gx/(x + y) < n £ -kx°

which satisfies B15.
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In Case 24, it is necessary to satisfy Bl4, Bl15, D21,
and D22. If G < ky°, then by D13, G' 2 kx° and it is suf-
ficient to satisfy Bl14 or B15. Substituting m' + ky° for m
in Bl4 and simplifying the result with the aid of D13 gives

-G'y/(x + y) <m' £ kx°- G'

which satisfies D21. Substituting n'- kx° for n in B15 and

simplifying with the aid of D13 gives
G'x/(x + y) < n' £ kx°®

which satisfies D22. If G 2 ky®°, then by D13, G' £ kx° and
it is sufficient to satisfy D21 or D22. Substituting m -ky°

for m' in D21 and simplifying gives
Gy/(x +y) <m < ky®

which satisfies Bl4. Substituting n + kx° for n' in D22 and

simplifying the result gives
-Gx/(x + y) < n £ ky°- G

which satisfies B15.

Three examples. In our first example, let it be given
that G' = 5 and G = 6. Then G'- G = -1 and G' + G = 11;
and, to satisfy D14, k(x°+ y°) must be an odd number such
that 1 < k(x°+ y°) < 11. We choose x° = 4, y° = 3, and
k = 1. Thus k(x° + y°) =7, and G'- G < k(x°+ y°), which

>

satisfies D16 and thereby identifies the case as 14. D8

gives

m' = [G'+ G - k(x°+ y°)]/2 = 2

n' = [k(x°+ y°) + G'- G]/2 = 3
C9 gives m=m'+ kKy° = 5
Cl10 gives n =n'- kx° = -1
C2 and A8 give f'° = f° = 17.

Plot 6 shows these coinciding tones, plus some other tones
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Plot 6. x° =4, y°> =3, k =1, Case 14
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that have the same values of G' and G but do not coincide,
in order not only to illustrate the above solution but also
to demonstrate the use of a plot to find whatever coinci-
dences may exist or to show the lack of coincidences if
there are none.

In our second example, G' = 6, G = 4, x° = 3, and
y° = 2. From this data, G'- G = 2, G'+ G = 10, x°+ y° = 5,
and by D14, 2 < 5k < 10, whence it is evident that k = 2,

not 1, because 5k - 2 and 10 - 5k must be even numbers.
k(x° - y°) =2 =G' -G
and k(XO + yo) =10 = G'+ G

thereby satisfying D15, D16, D9, and D13, which identify
Cases 21, 14, 11, and 24. Because of this, D5 thru D10 may
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x° =3, y° =2, k = 2, Case 24 Plot 7.
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be used to solve for the coefficients, whence m' = O,
n' =6, m=4, n=20, and f'° = f° = 12, Regarded as Case

24, however, this data gives three solutions including the

2

preceding. G'y/(x + y) = 12/5, and substitution into D21
yvields

-12/5 < m' £ 0, whence m' = -2, -1, or O.
From D2, n' =m'+ G' = 4, 5, or 6.
From C9, m = m'+ ky° = 2, 3, or 4.
From C10, n =n'- kx° = -2, -1, or O.

H
N
3

From C2 and A8, f'e= f£° or 12.
These and some other tones with the same indexes are shown
in Plot 7.
Our third example shows what happens when the rule of
D14 is violated. Let G' =6, G=4, x° =7, and y° = 5.
Then G'- G = 2, G'+ G = 10, and x°+ y° = 12. There 1is no

)

value assignable to k that satisfies D14, the data do not
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Plot 8. x° =7, y° = 5, No coincidence.
7
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fit any of the prescribed cases, and none of the equations
of D2 or of D5 thru D10 are usable to solve for a set of co-
efficients. As can be seen in Plot 8, the result is that

there is no coincidence.

E. Minimum-Index Tones

Dividing B3, B7, and Bl2 by g and solving for G results
respectively in the three following expressions for G as a

function of f° and m:

In the first quadrant, G = [f°- m(x°- y°)]1/y° El
In the second quadrant, G = [f°- m(x°+ y°)]/y° E2
In the fourth quadrant, G = [m(x°+ y°) - £°]/y° E3

A10 expresses n as a function of f° and m in one equation
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for all quadrants.

Our concern here is the behavior of G and n while f° is
held constant and m is given successively larger values. As
m increases, G decreases in the first and second quadrants
and increases in the fourth quadrant whereas n decreases 1in
every quadrant. Inasmuch as n > O in the first and second
quadrants and n < 0 in the fourth, it is seen that, as m in-
creases, the index G decreases when n > O and increases when
n <0, reaching a minimum when n is near or equal to O.
Plots 9, 10, 11, and 12 illustrate this.

The tone with the smallest index of all tones of its
frequency is called a minimum-index tone. It is the most
significant tone of its frequency, and there is usually one
such tone for every frequency as in Plots 9, 11, and 12; but
there may be two for some frequencies as in Plot 10. In lo-
cating a minimum-index tone, there are always two adjacent
tones to choose from: one having a least index for n > O,
the other having a least index for n £ O. If the two indexes
are unequal, the lesser is the minimum; if they are equal,
both are a minimum. Let the tone in the first or second
quadrant be m'x + n'y, and let the tone in the fourth quad-
rant be mx + ny; then Cases 14 and 24 are applicable with
k = 1 because the tones are adjacent.

When the index of a tone in the first quadrant is to be
compared with that of an adjacent tone in the fourth quad-
rant (Case 14), D8 and D7 give

G'+ G = 2m'+ x°+ y° E4
and G'- G = 2n'- (x°+ y°) E5
= 2n + x°- y° E6

If G'- G 2 0

(x°+ y°)/2 E7

o]
v
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n > -(x°-y°)/2 E8
G' 2 m'+ (x°+ y°)/2 E9
G <m'+ (x°+ y°)/2 =m + (x°- y°)/2 E10

and G is a minimum index.

If G'- G < 0,
n' < (x°+ y°)/2 E11
n < -(x°-y°)/2 E12
G' <m'+ (x°+ y°)/2 E13
G2m'+ (x°+ y°)/2 =m+ (x°- y°)/2 E14

and G' is a minimum index.
When the index of a tone in the second guadrant is to
be compared with that of an adjacent tone in the fourth

quadrant (Case 24), D13 gives

G'+ G = x°+ y° E15
and G'- G = x°+ y° - 2G Ele6
= 2G' - (x°+ y°) E17
If G'- G » O,
G' 2 (x°+ y°)/2 E18
G < (x°+ y°)/2 E19

and G is a minimum index.

If G'- G £ 0,
G' < (x°+ y°)/2 E20
G2 (x°+ y°)/2 E21

and G' is a minimum index.
If x°+ y° is even, then, regardless of whether it is a
tone in the first quadrant or in the second quadrant that

coincides with a tone in the fourth quadrant, E5 and E16
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show that G' and G may be the same; and if, when x°+ y° is
even, G' and G are the same, then both indexes are a mini-

mum. and there is a coincidence of minimum-index tones. If

x°+ y° is odd, then G' and G must be different, only one of
them is a minimum, and there cannot be a coincidence of
minimum~-index tones.

Any index that is less than or equal to (x°+ y°)/2
satisfies the four equations E10, E13, E19, and E20 and is
therefore a minimum. An index greater than (x°+ y°)/2 that
has m' > 0 (or m > y° by C9) and whose coefficient of y lies

1 satisfies E10

between —-(x°- y°)/2 and (x°+ y°)/2 inclusive
or E13 and is a minimum. The boundaries thus established
give the minimum-index tones a definite location in the plot
of an aural spectrum. Tones that lie outside these boun-
daries have larger than minimum indexes and are called
peripheral tones. Plot 13 shows the minimum-index tones
with G ¢ (x°+ y°)/2 for the interval 7/5, and Plot 14 shows
minimum—-index tones with G > (x°+ y°)/2 for the same inter-
val. Plot 15 shows minimum-index tones for the interval
8/3. Coincidences are present in Plots 13 and 14, where

x°+ y° is even, and absent from Plot 15, where x°+ y° 1is
odd. These plots do not show peripheral tones.

There is at least one minimum-index tone for every fre-
quency that can exist in the spectrum, but all multiples of
g are possible; therefore, the complete set of minimum-index
tones includes all multiples of g. Thus, the frequency num-
bers in these plots start with 1 and, including all integers
in succession, increase (that is, extend to the right) with-
out limit. For this reason, the minimum-index tones are
said to have perfect continuity and an unlimited range. The

possession of these two attributes depends on the inclusion

1. The coefficient of y is either n or n'. If it is n, E8
is applicable; if it is n', El11l applies.
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Plot 13. x° =7, y° =5, G < (x°+ y°)/2
Minimum-index tones.
7
6 30
5 18 25 32
4 13 20 27 34
3 1 8 15 22 29 36
2 3 10 17 24 31 38
1 5 12 19 26 33 40
0 14 21 28 35 42
-1 9 16 23 30
-9 4 11 18
-3 6
-4
-5 m
-3 -2 -1 0 1 2 3 4 5 6 7
Plot 14. x° =7, y° =5, G> (x°+y°)/2
Minimum-index tones.
7
6 37 44 51 58 65 72 79
5 39 46 53 60 67 74
4 41 48 55 62 69
3 43 50 57 64
2 45 52 59
1 47 54
0 49
-1 37 44
-2
-3
-4
-5
-3 -2 -1 0 1 2 3 4 5 6 7
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x° = 8, y° = 3, Minimum-index tones. Plot 15.
7
6
5 15 23 31 39 47 55
4 12 20 28 36 44 52
3 9 17 25 33 41 49
2 6 14 22 30 38 46
1 3 11 19 27 35 43
0 n 8 16 24 32 40
-1 5 13 21 29 37
-9 2 10 18 26 34
-3 7
-4
-5
-3 -2 -1 0 1 2 3 4 5 6 7
of indexes of all magnitudes, no matter how large. In the

practical realm, however, indexes that are too great (that
is, tones that are too weak) must be excluded from consider-

ation. This subject is taken up in the next section.

F. Significant Tones of the Aural Spectrum

Let N denote the maximum index of an audibly signifi-
cant spectral tone. Then tones whose indexes are less than
or equal to N will be considered significant, and tones
whose indexes are greater than N will be regarded as negli-
gible. It is suggested here that 7 or 8 may be a suitable
value of N for a typical spectrum, but this number is not
known with certainty and may vary according to circumstances.
Furthermore, it is advantageous for the development of prin-

ciples to be able to vary the number of tones that are
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Plot 16. ° =8, y° = N =

7

6 18

5 7 15 23 31 39 47

4 12 20 28 36 44

3 1 17 25 33 41 49

2 14 22 30 38 46 54
1 11 19 27 35 43 51
0 16 24 32 40 48
-1 13 21 29 37 45
-2 10 18 26 34 42
-3 7 15
-4
-5 m

-3 -2 -1 0 1 2 3 4 5 6

Plot 17. =7, y° = N =

7

6 18

5 15 22 29 36 43

4 12 19 26 33 40

3 16 23 30 37 44

2 13 20 27 34 41 48
1 3 10 17 24 31 38 45
0 7 14 21 28 35 42
-1 11 18 25 32 39
-9 1 15 22 29 36
-3 12

-4

-5

-3 -2 -1 0 1 2 3 4 5 6
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considered significant; therefore, N is not limited here to
one fixed value.

Assigning a finite value to N establishes a boundary as
shown in Plots 16 and 17. The tones inside this boundary
are recognized as being audibly significant; those outside
the boundary are regarded as negligible. This boundary al-
ways divides the minimum-index tones into two categories:
the significant and the negligible; and, when N > (x°+y°)/2,
the peripheral tones are divided into the same two categor-
ies. Thus, there are four categories altogether, but only
three of them are important, and they occur in three cases
that collectively contain all possible values of x°+ ve.
These cases are as follows:

Case 1, Plot 18.

x°+ y° = 2N or 2N + 1 Fl

The significant tones are identical to the minimum-index
tones with G < (x°+ y°)/2.
Case 2, Plot 19.

x°+ y° < 2N F2

Significant peripheral tones occur in this case.
Case 3, Plot 20.

X°+ y° > 2N + 1 F3

The significant tones do not include all of the minimum-
index tones with G < (x°+ y°)/2.

We are not concerned with negligible peripheral tones.
The importance of certain negligible minimum-index tones be-
comes apparent in the following paragraphs.

The continuity of the significant tones is broken when
a frequency less than Nx is supplied only by negligible
tones, that is, tones for which

G > Nor 2G > 2N + 1 F4
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Plot 18. ° =8, y° =3, N=5, Case 1
7
6
5
4 Negligible
3 Signfificant
2] minimum-ipdex
1 minimum-index
On tonps
-1 tones
-2
-3
-4
-5 m
-3 -2 -1 0 1 2 3 4 5 6 7
Plot 19. ° =5, y° =2, N=7, Case 2
7
6 Significant
5 peripheral
4 tones
3 Negligibfle
2 Significgant minimum-
1 minimum-index index
0 n tones
-1 tones
-2 Significant’
-3 peripheral
-4 tongs
-5 m
-3 -2 -1 0 1 2 3 4 5 6 7
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x° =11, y° = 4, N = 5, Case 3 Plot 20.
7
6
5
4 Negligible
3 Signifficanft
2 minimum-index
1 minimum-index
0 n tonegls
-1 tones
-2
-3
-4
-5
-3 -2 -1 0 1 2 3 4 5 6 7

G being understood to designate the index whether it is G or
G'. There is a minimum-index tone for every frequency of
the spectrum; therefore, the continuity of the significant
tones can be broken only when a minimum—-index tone is negli-
gible. Furthermore, any negligible minimum-index tone with
f < Nx breaks the continuity of the significant tones, be-
cause any other tone of the same frequency has an equal or
larger index and is also negligible. It follows that the
significant tones are continuous up to but not including the
lowest negligible minimum-index tone.

Cases 1 and 2. Fl, F2, and F4 unite to give

b

2G > 2N + 1 2 x°+ y° F5

but F4 is the condition for tones to be negligible; there-

fore, in these two cases, all negligible tones have indexes
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greater than (x°+ y°)/2. This includes negligible minimum-
index tones; but minimum-index tones with G > (x°+ y°)/2 are
in either the first or fourth quadrant; therefore, in Cases
1 and 2, any negligible minimum-index tone is in the first
or fourth quadrant.

When primes are applied to f, G, and n, B4 gives us the

2

following expression for the frequency of the tone in the

first quadrant:
f' =G6'x - n'"(x - y) F6

The lowest tone in the first quadrant with a given minimum
index results when the largest value of n' is taken from

E11l, namely n' = (x°+ y°- pn)/2 F7

where 0 when x°+ y° is even

1 when x°+ y° is odd. F8

=
il

Bl3 gives us the following expression for the frequency of

the tone in the fourth quadrant:
f =G6Gx + n(x +y) F9

The lowest tone in the fourth quadrant with a given minimum
index results when the smallest value of n is taken from E8,

namely n=—-(x°- y°= p)/2 F10

The indexes of these two tones must be equal, but their fre-
quencies may be different.

Letting G' = G, we subtract F6 from F9 and, with the
aid of F7, F10, and A5, obtain

f-f'" = (n'+n)x - (n'- n)y
=y°x - (x°- Wy
= Uy F11

It follows that f' is the frequency of the lowest minimum-

index tone with a given index greater than (x°+ y°)/2. Both
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tones have the same frequency when x°+ y° is even.
The frequency of the lowest negligible minimum-
index tone is, therefore, given by F6 when n' is given by F7
and G' is given the smallest value possible under the condi-
tions. Since F4 is the governing condition, G' = N + 1, and
this frequency is
f'' = (N+ 1)x - n'"(x - y) Fi12
=x + Ny + (N - n")(x - y) F13

Solving F1 for N and comparing the result with F7 yields

N = (x°+ y°=- u)/2 = n' F14
therefore, in Case 1 or when x =-y,

f' = x + Ny F15
F2 and F7 give

N > (x°+ y°)/2 2 n' v Fle

therefore, in Case 2 when x > vy,

f' > x + Ny F17
In both cases it is always true that

f' 2 x + Ny F18
Since f' is the frequency of the first gap, this shows that
the range of continuity extends up to and possibly beyond
x + Ny when x°+ y° < 2N + 1.

F12 can also be written in the familiar form

f'" = m'x + n'y where
m' =N-n'+1>1 F19

The application of this to certain intervals is shown below:

xX°+ y° 2 3 4 S 6 7
x°/y°| 1/12/1|3/1|3/2, 4/1|5/1| 4/3, 5/2, 6/1 F20
f! Nx + y (N - 1)x + 2y | (N - 2)x + 3y
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X°+ y° 8 9 10 11
x°/y°\l 5/3, 7/1| 5/4, 7/2, 8/1| 7/3, 9/1| 6/5, 7/4
f (N - 3)x + 4y (N - 4)x + 5y

8/3

b

In accord with this, the first gap (that is, the lowest
break in the continuity of the significant tones) in Plots
16 and 17 is at 2x + by.

The frequency of the highest significant tone is Nx;
and the continuity of the significant tones is broken if,
and only if, f' < Nx. Therefore, it is important to compare
f' with Nx. This is done by calculating f'—- Nx. Subtract-

ing Nx from f' as given in F12 results in

P R

f'—- Nx n'(x - y)
- (x°+ y°=- wW)(x - y)/2
- (2y°+ x°- y°- wW)(x - y)/2

- (x°- y°)y - (x°- y°- wW)(x - y)/2 F21

which can be used to calculate the correct value of f' but

not the correct values of m' and n'. It is interesting to
note the dependence of f'- Nx on x°- y°. A tabulation of
expressions for f'- Nx for several values of x°- y° follows:
x°- y° |l O 1 2 3 4 5. 6
) F22
f'- Nx{|lx|x - y| -y| -2y | -x -2y | -x -3y | —-2x -3y

When x°- y° = 0, x° = y° =1, and f'°- Nx°= x° = 1. When
x°- y° =1, x°/y® = (y°+ 1)/y°, a superparticular ratio, and
f'° - Nx° = x°- y° = 1. This shows us that, in the unison

and the intervals with superparticular frequency ratios
(such as the octave, the perfect fifth, the perfect fourth,
and the major and minor thirds in just intonation), the
first gap is the first tone above Nx or, in other words, the
significant tones are continuous thru Nx. 1In other inter-
vals, gaps occur below Nx. These observations are found to

be in exact agreement with Figure 4, Chapter 2, which shows
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the significant tones corresponding with N = 6.
Case 3. There are two ways to satisfy both F3 and F4.

First, 2G > x°+ y° > 2N + 1 F23
Second, x°+ y° 2 2G > 2N + 1 F24

In the first way, as in Cases 1 and 2, the negligible
tones have indexes greater than (x°+ y°)/2. As a result,
the negligible minimum-index tones are in the first and
fourth quadrants, F6 thru F1l still apply, and the frequency
of the lowest negligible minimum-index tone is given by F6
when n' is given by F7 and G' is given the smallest permit-
ted value. Unlike Cases 1 and 2, however, the value of G'
(which equals G) is restricted by F23, which also takes the

form G' >n' >N F25

In consequence, the smallest permitted value of G' is n'+ 1;

and, by substitution in to F6, the first way gives

f 1

(n'+ 1)x - n'(x - y)

i

X + n'y
> x + Ny F26

The second way to satisfy F3 and F4 always offers at
least one index less than or equal to (x°+ y°)/2 and greater
than N, and only negligible minimum-index tones can have
such an index. It was noted at the end of Section B that
the lowest tones for a given index are in the second and
fourth quadrants and fall within the basic range; that is,
f {x+yand £' { x + V. A comparison of this with F26
shows clearly that the second way offers lower negligible
minimum—-index tones than the first way.

Thus the lowest negligible minimum-index tones of Case
3 are those found in the second way, and they always intro-
duce at least one gap in the basic range of the aural spec-

trum. This spoils the continuity of the significant tones
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even within a more restricted range than g to x + Ny. Since,
in this case, x°+ y° > 2N + 1, it can be seen that F5 is a

necessary as well as a sufficient condition for the first gap
(or lowest break) in the significant portion of the spectrum

to fall at or above x + Ny,

G. Primary Coincidences

Of primary importance are the coincidences obtained
when G'+ G and |G'- G| are minimal under the conditions im-

posed by D14. This gives

k=1 G1
G'+ G = x°+ y° G2
IG'- Gl = u G3

where p is as defined in F8.

Gl identifies the coinciding tones as being adjacent;
G2 identifies the case as 24, thereby placing m'x + n'y in
the second quadrant and mx + ny in the fourth; and G3 shows
that the two tones are of equal or nearly equal loudness.
If x°+ y° is even, p = 0 and both indexes are a minimum. If
x°+ y° is odd, p = 1, one of the indexes is a minimum, and
the other is the next smallest for tones of their frequency.
Therefore, the two tones are the two strongest of their fre-
quency. The coincidences thus provided must be the best ob-
tainable, that is, those that are of the greatest aural sig-
nificance for the interval. For this reason, they will be
referred to as primary coincidences. Coincidences of other
tones with these or with each other will be called secondary
coincidences. '

Inasmuch as they belong to Case’24, primary coincidences
involve only partials and difference tones, which are gener-

ally lower in frequency than summation tones. This agrees
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with identifying them as the most significant coincidences,
for experimental evidence has found that summation tones
appear to be weaker than difference tones of the same degree
and that the lower tones may mask the higher tones (Ch. 2,
Sec. F and G).

G3 can also be expressed as

G'-G=+ 1 G4
Adding this to G2 and dividing the resulting sum by 2 gives
G' = (x°+ y° £ u)/2 G5

The procedure set forth in Section D for determining the

coefficients of the coinciding tones requires in Case 24

that we compare G with ky° or G' with kx°. We choose the
latter and, since k = 1 here, compare G' with x°. Because
of A6, 2x° > x°+ y° 2 2y° or 2y° < x°+ y° + u g 2x°, and
this together with G5 yields

y° £ G' ¢ x° G6

In view of this, D21 or D22 may be used to choose values of
m' or n'. Let D21 be used to find values of m'; then, for
each m', D2, C9, and C10 provide the following expressions

for the remaining coefficients:

n' =G' +m' G7
m=m'+y° G8
n=n" - x° G9

Substitution from G7 into Cl results in

f' =m'x + (G'+ m')y

m'(x +y) + G'y G10

il

which is equivalent to B7 with primes applied to f, m, and
G. G5 gives one value of G' when x°+ y° is even and two
values when x°+ y° is odd. For each value of G', the lowest

value of m' obtainable under D21 is also the lowest value
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Plot 21. x° =3, y° 2, Primary coincidences.

OIRINIWIk OO |
(e}

that results in a positive frequency. This places the coin-
ciding tones in the basic range, and identifies them as
minimum-frequency tones. Inasmuch as there are one or two
values of G', there are one or two corresponding primary
coincidences in the basic range. The primary coincidences
for three intervals together with boundaries locating the
minimum-index tones are shown in Plots 21 thru 23. Those
for two of these plus four other intervals that can reason-—
ably well be given by tones of our musical scale are showﬁ
in Figure 1.

As noted in Chapter 1, Section D, the lowest coinci-
dence of two partials occurs between x°y and y°x. Letting
m' =0, n' = x°, m=y°, and n = 0, we see that this is a

3
o

Case 24 coincidence with G' = X° and G = y°. In order for

this to be a primary coincidence, G2 and G3 must be
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x° =5, y° = 1, Primary coincidence. Plot 22.
7
6
5
4
3 3
2
1
0
-1
-2 3
-3
-4
-5 m
-3 -2 -1 0 1 2 3 4 6 7
x° 5, = 4, Primary coincidences. Plot 23.
7
6
5 20
4 11 16
3 2 7
2
1
0 20
-1 11 16
-9 2 7
-3
-4
-5
-3 -2 -1 0 1 2 3 4 6 7
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Figure 1. Primary coincidences. Just intonation is re-

quired for the coincidences to be exact; even so, the d#
given for 8/3 is only approximate. The white notes repre-
sent the fundamentals of the generating tones; and the black
notes, the coinciding partials and difference tones.

satisfied. G2 is already satisfied, and G3 is satisfied
when x°- y° = pu. In other words, the lowest coincidence of
two partials is a primary coincidence only for the unison
and the superparticular ratios, esteemed by Ptolemy (second
century A.D.) and many others since then.2 Examples of such
appear in Plots 21 and 23.

Substitution from G5 into Gl0 gives

f'=m'(x +y) + (x°+ y° + wyy/2 Gl1

The highest value of m' obtainable under D21 is 0; therefore

2

the frequency of the highest primary coincidence is

f' = (x°+ y° + wy/2 Gl2

2. J.M. Barbour, Tuning and Temperament, pp. 2 and 23.
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In Section F, f' is the frequency of the lowest negligible

minimum-index tone, and there F14, F16, and F18 give
f' 2 x + (x°+ y°- wy/2

Subtraction of G12 from this results in a difference greater
than or equal to x - uy, a positive quantity. When

x°+ y° < 2N + 1, then, all the primary coincidences clearly

fall within the range of continuity. In such coincidences,

at least one of the tones is significant while the other may

be negligible as in Plot 23 with N = 4,

H. Coincidence of Significant Spectral Tones

For two spectral tones to be significant, it is re-

quired that G' < Nand G < N -

These two requirements can be condensed into the one conven-

ient statement ., . . |G'- G| < 2N H2

Combining this with D14 results in
|G'~ G| < k(x°+ y°) < G'+ G < 2N - |G'- G H3

which expresses the necessary and sufficient conditions for
the coincidence of significant tones of the aural spectrum.

Foremost among these conditions is
x°+ y° < 2N H4

As long as this requirement is satisfied, values of k, G,
and G' can be found that conform to H3 and consequently de-
termine coincidences in which the tones are significant.
Intervals that conform to H4 have aural spectra in which
significant tones coincide, and intervals that do not con-
form to this do not exhibit the coincidence of significant
tones. When a specific value is assigned to N, H4 places an
upper limit on x°+ y°; thus, the value of N regulates which

ratios of x to y exhibit the coincidence of significant
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tones of the aural spectrum. All the intervals distinguished
by the coincidence of significant tones when N = 6 can be
found in Figure 4, Chapter 2. These intervals demonstrate
adherence to H4 in that none of them has a ratio of x to y
in which x°+ y° exceeds 12.

When x°+ y° is as close as possible to the upper limit

permitted by H4, x°+ y° = 2N - u

Then, by H3, k = 1, G'+ G = x°+ y°, |G'- G| = p, and there

are only primary coincidences. Conversely, substitution
from Gl1, G2, and G3 into H3 gives

g x°+y® =G'+ G 2N -

which shows that the primary coincidences satisfy the condi-
tions for the coinciding tones to be significant when H4 is
respected.

When x°+ y° < 2N - u, there are both primary and
secondary coincidences of significant tones. As an example,
let us consider the just major third with N = 6. Here

x° =5, y° =4, x°+ y° =9, 2N = 12

b

and k can only equal 1.

b

Substitution of these quantities into H3 yields
|G'- G| <9< G'+G< 12 - |G'- G]

This and the requirement that G'+ G and |G'~- G| must differ

from k(x°+ y°) by even numbers give the results tabulated

below:
G'+ G G'- G G' G Coincidences
9 1 15) 4 .
Primary
9 -1 4 5
9 3 6 3
9 -3 3 6 Secondary
11 1 6 5
11 -1 5 6
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x° =5, y° = 4, N = 6, Secondary coincidences. Plot 24.
7
6 24
5 15 25
4 6 21
3 12
2 3
1 24
0 n 15 25
-1 6 21
-2 12
-3 3
-4
-5
-3 -2 -1 0] 1 2 3 4 5 6 7

These values of G' and G used in conjunction with the pro-
cedures of Section D lead to the five primary coincidences
of Plot 23 and the seven secondary coincidences of Plot 24.
All twelve coincidences of significant tones can be seen in

Figure 4, Chapter 2.

I. The Basic Range

The prominence of the parameter x°+ y° prompts us to
observe that it is the number of distinct frequencies in the
basic range (g to x + y inclusive). This portion of the
aural spectrum embraces the lowest tones, including x and y,
and the one or two lowest primary coincidences. Further-
more, the continuity of this range is the key to the conti-

nuity of the spectrum. If the spectrum is continuous in
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the basic range, it is continuous thru a larger range; if
the spectrum is not continuous in this range, it is not con-
tinuous. As we shall see, the number of significant tones
in this range is 2N + 1 regardless of the ratio of x to v,
whether commensurable or incommensurable.

The tone x + y is the lowest summation tone, and there
is no other summation tone as low as this one. Therefore,
any other spectral tone as low as or lower than x + y must
be a partial or a difference tone; that is, any minimum-fre-
quency tone other than x + y must be in the second or fourth
quadrant. As was observed in Section B, there are one mini-
mum-frequency tone in the second quadrant and one in the
fourth quadrant for every value of G. Since we are consider-
ing only significant tones, G consists of the N integers in
the range 1 £ G < N. It follows that there is a total of 2N
significant minimum-frequency partials and difference tones.
Inclusion of the summation tone x + y requires that N 2 2;
and, with this proviso, the number of significant spectral
tones in the basic range equals 2N + 1.

Let us consider how these 2N + 1 significant tones are
distributed among the x°+ y° distinct frequencies of the ba-
sic range. When x°+ y° = 2N + 1, there is no coincidence of
significant tones, the frequency of the first gap is x + Ny,
and it follows that there is exactly one significant tone
for every distinct frequency in the range below x + Ny. 1If
coincidences exist, there are no gaps; if gaps exist, there
are no coincidences. In other words, the distribution is as
nearly even as possible.

Further observations confirm that this principle of
even distribution can be generalized and extended as follows.
Division of 2N + 1 by x°+ y° results in a quotient q and a
remainder r equal to 2N + 1 - g(x°+ y°), which is less than

x°+ y°. Then there are q significant tones for each of
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Signific:nt miﬁigum—fgéqﬁenc; tones. Plot 25.

7

6

) 7

4

3 1 5

2

1 7

On
—1 1 5
-9 5

-3 3 | 7
-4
-5
-3 |2 | -1 0 1 2 3 4 5 6 7

x°+ y°- r distinct frequencies and q + 1 significant tones
for each of r distinct frequencies within the basic range.
In particular, there are q significant tones for each fre-
quency when r = 0, and there are r coincidences of signifi-
cant tones when q = 1. These relations can be observed in
Plots 16 and 17 and are specifically illustrated in Plot 25.
In Plot 16, g = 1, r = 2, and there are two coincidences of
significant tones in the basic range. In Plot 17, q = 1,

r = 3, and there are three coincidences of significant tones
in the basic range. 1In Plot 25, q = 2, r = 1, two signifi-
cant tones coincide at each of six minimum frequencies, and

three tones coincide at the frequency of x + y.
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J. Discernible Intervals

A summary of the relations presented so far concerning
continuity and coincidence of the audibly significant tones

0of the aural spectrum is tabulated below:

First Gap X°+ y° Coincidences
Above x + Ny < 2N - 1 Primary and secondary
N > (x°+ y°- p)/2 = 2N - 1 Primary only
At x + Ny = 2N N = (x°+ y°+ p)/2

N = (x°+ y°=- p)/2 2N + 1 None

Below x + ¥y > 2N + 1 N < (x°+ y°+ p)/2

The following paragraph offers assistance in the interpre-
tation of this tabulation.

When x°+ y° = 2N + 1, the significant tones have neither
break nor coincidence within the range starting with g and
extending up to but not including x + Ny. Thus, in Figure 4,
Chapter 2, in which N is 6, all the intervals for which
x°+ y° equals 13 have exactly one significant tone to every
distinct frequency within the range from g to x + 6y. When
x°+ y° = 2N, the range of continuity is still the same, altho
primary coincidences will now be found within this range.
When x°+ y° = 2N - 1, F7 gives n' = N - 1, F13 places the
first gap at 2x + (N - 1)y, and there are still only primary
coincidences within the range of continuity.

Two general conclusions follow:

1. Intervals in which x°+ y° exceeds 2N + 1 do not have aural
spectra that exhibit audibly significant continuity.

2. There is no audibly significant coincidence of tones in
the spectra of intervals in which x°+ y° exceeds 2N.

Now continuity and coincidence of spectral tones were shown

at the beginning of this chapter to be characteristic of



Sec. J 117

Table I

The Discernibly Commensurable Intervals

The intervals are listed in the order of decreasing discern-
ibleness of continuity and coincidence of spectral tones.
Names that apply strictly only to intervals one or more
octaves smaller are in parentheses.

Xx°+ y° | x°/y° Name x°+ y° | x°/)y° Name
2 1/1 unison 12 7/5
3 2/1 octave 11/1
4 3/1 per. 12th 13 7/6
5 3/2 per. 5th 8/5 min. 6th
4/1 15th 9/4 maj. 9th
6 5/1 (maj. 3rd) 10/3 maj. 13th
7 4/3 per. 4th 11/2
5/2 maj. 10th 12/1 (per. 5th)
6/1 (per. 5th) 14 9/5 min. 7th
8 5/3 maj. 6th 11/3
7/1 13/1
9 5/4 maj. 3rd 15 8/7
7/2 11/4
8/1 (octave) 13/2
10 7/3 14/1
9/1 (maj. 2nd) 16 9/7
11 6/5 min. 3rd 11/5
7/4 13/3
8/3 per. 11lth 15/1 (maj. 7th)
9/2 (maj. 2nd)
10/1 (maj. 3rd)

commensurable intervals, but we have found that they are
audibly discernible only when x°+ y° is limited in magnitude
to 2N or less. Let us say that an interval is discernibly
commensurable (or simply discernible) when x°+ y° < 2N.
Moreover, these discernible intervals do not all demonstrate
the continuity and coincidence of significant spectral tones
to an equally discernible extent. Smaller values of x°+ y°
result in the continuity and coincidence of spectral tones
that have smaller indexes and are therefore stronger. For
this reason, the discernible intervals will be said to be

more discernible when x°+ y° is smaller, and less
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discernible (or more obscure) when x°+ y° is larger.

All the intervals that are discernible with N = 8 are
listed in Table I, where they are classified in the order of
the values of x°+ y° resulting from their ratios. Intervals
that fall in the same class according to this measure are
further differentiated according to the value of x°- y°.
Thus, the intervals can be said to be listed in the order of
decreasing discernibleness (or of increasing obscurity),
those at the beginning being easily discernible and those at

the end being discernible only with difficulty.

K. The "Third Tone"

In Chapter 2, Section E, it was pointed out that the
aural spectrum of a musical tone consists of pure tones (or
partials) whose frequencies fall according to the ratios of
the harmonic series (that is, x, 2x, 3x, 4x, and so forth)
and that the frequency of the first partial (or fundamental)
is aurally interpreted as being that of the tone as a whole.

Now, the aural spectrum of a discernible interval aiso con-—

sists of pure tones whose frequencies fall according to the
ratios of the harmonic series (thét is, g, 2g, 3g, 4g, and
so forth); and the frequency of the lowest of these tones,
which may also be called the fundamental, is aurally signi-
ficant as the identifying frequency of the spectrum as a
whole. Thus, the aural spectrum of a discernible interval
is identical in form to that of a single musical tone, and
we can truly say that it constitutes a '"third tone'" that is
heard with every such interval, whose discernibleness is
proportional to that of the interval itself, and which is
related in frequency to the two primary tones as fundamental
to partials.

In spite of the fact that the third tone is well repre-

sented in that it usually has more "partials' than the
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typical musical tone, it is not always independently per-
ceived, and there has been confusion over the pitch rela-
tionship of the third tone to the primary tones, which over-
shadow it in the hearing and thus cloud the perception and
identity of the third tone. Nevertheless, each primary tone
is heard as having a certain harmonic quality peculiar to
its position in the spectrum, that is, according to which
partial of the third tone it is. Thus, any primary tone of
an interval that is related to the other tone as a fundamen-
tal to an upper partial is coincident with the fundamental
of the third tone and is heard as having the harmonic quali-
ty of a fundamental; any priﬁary tone of an interval that is
related to the other primary tone as a second partial to an-
other partial is coincident with the second partial of the
third tone and is heard as having the harmonic quality of a
second partial; and so forth. That the primary tones of
discernible intervals have harmonic qualities determined by
the ratio of X to y agrees with the well known fact that
every discernible interval has a distinguishing (or charac-
teristic) sound that is detected by the musician's ear and
plays a major role in the recognition of specific harmonic
intervals.

Apparently Tartini was the first to make the discovery
of the third tone altho not the first to publish it.3
Shirlaw paraphrases Tartini thus:

If, he points out, two sounds of just intona-
tion be sounded clearly and loudly together, there
will result a third sound, lower in pitch than the
other two, and which will be the fundamentall
sound of the harmonic series of which the first
two sounds form an integral part.

3. Giuseppe Tartini's published account was in his Trattato
di musica secondo la vera scienza dell' armonia, 1754. Two
earlier publications describing such tones were by Sorge in
1744 and by Romieu in 1751,
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and adds this footnote:

1. Tartini, however, does not here say fundamental,
but octave of the fundamental, corresponding to the
term %, and in the examples he gives of the result-
ant '"third sound,'" places it an octave too high.
This mistake he afterwards corrected.%

The historically recent discovery of the third tone is
cause for comment, but its existence can hardly be doubted
when one considers the continuity of an aural spectrum that
has coincidences and recognizes that the tunableness of an
interval by the elimination of beats (Ch. 2, Sec. B) demon-
strates the coincidence of spectral tones. That most of the
intervals of Table I are thus tunable appears to be substan-
tiated by experimental results of Harry Partch. He says:

Experience in tuning the Chromelodeon has
proved conclusively that not only the ratios of 3
and 5, but also the intervals of 7, 9, and 11 are
tunable by eliminating beats.d

He says also:

. . the ear (or this ear) cannot possibly hear 24
to 25 as such, even though the two tones definitely
preserve their individual integrity (the question
Meyer raises), for if one is slightly out of tune,
so that the ratio is, let us say, 24.1 to 25, the
beats will simply be a trifle slower. Yet in a
median register on the Chromelodeon both 9/8 and
10/9 are clearly heard, by tuning them to eliminate
beats and by the establishment of high frequency of
wave period in 8 to 9 and 9 to 10. Almost anyone
can distinguish and tune 6/5, which is the only 5-
limit ratio in this particular range of ratios.
Consequently, at some point, to be determined by
the individual, in the narrowing of intervals

4. Matthew Shirlaw, The Theory of Harmony, p. 289.

5. Genesis of a Music, p. 139. By 'the intervals of 7, 9,
and 11" he means intervals whose frequency ratios can be ex-
pressed by integers respectively not larger than 7, 9, and
11, except that either term of the ratio may be multiplied
by any reasonably small positive integral power of 2. The
Chromelodeon is a modified reed organ whose tone ''has a very
rich harmonic content."
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between the wide 6/5 and the narrow 16/15 or 25/24,
and at the corresponding point in the approach to

2/1 (and, incidentally, at some prime number larger
than 11 in the wider intervals), the ear refuses to
distinguish between rational and irrational numbers. 6

Partch's "intervals of 7, 9, and 11" are amply in evidence
in Table I in such ratios as 7/3, 8/7, 9/5, 11/4, and so
forth. The interval 9/8, which he intimates is among the
more difficult intervals to tune by ear, does not appear 1in
Table I and therefore would be expected to be difficult, if
not impossible, to tune by the elimination of beats. It is
especially remarkable that we find with Partch that prime
numbers larger than 11 occur in intervals larger than an
octave.

The author, who has had experience in tuning pianos,
finds that he is able to tune all the intervals that he can
play with one hand and for which x°+ y° < 16 by the elimina-
tion of beats. This includes most of Partch's intervals ex-
cept 9/8 and 10/9, which would naturally be easier to tune
on a Chromelodeon than on a piano. The difficulty of tuning
the intervals increases as x°+ y° increases and as one
leaves the middle range of the piano, but the tunableness of
these intervals by the elimination of beats stands as evi-
dence of the existence of a definite third tone not only in
the usual intervals of just intonation (3/2, 4/3, 5/3, 5/4,
6/5) but also in many others that are not now recognized in
musical theory or practice.

The historically early recognition in Western music of
the easily discernible intervals 1/1, 2/1, 3/2, and 4/3; the
later recognition of 5/3, 5/4, 6/5, and 8/5; and the recog-
nition not yet generally achieved of 7/4, 7/5, 7/6, and less

discernible intervals strongly suggest that discernibleness

6. Ibid., pp. 148-149.
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is an important deciding factor in the selection of intervals
for musical purposes. It is the author's belief that the
discernibly commensurable intervals appeal either consciously
or intuitively to musicians in their search for usable har-
monic intervals and that, therefore, all such intervals are
capable of harmonic usage in music. If this is so, the
recognition in theory and the adoption in practice of such
intervals as 7/3, 7/4, and 7/5 is at present a logical and
desirable avenue of advance in the development of greater
harmonic resources. The principal difficulty is finding the
technical means to handle them. It is perhaps equally sig-
nificant, however, that the number of discernible intervals
is limited and that, therefore, the development of music in
the direction of new basic harmonic relationships would
eventually meet a stopping point in whatever forward move-

ment it might enjoy in the future.
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Chapter 4

THE INTERPRETATION OF INTERVALS

A, Interrelating Commensurable Intervals

Using the smallest positive integers that can express
the ratios of the frequencies of the intervals, let x'/y' be
the frequency ratio of a given commensurable interval, let
x"/y" be that of a given larger interval, let x°/y° be that

of any other commensurable interval, and let

i = y'x” - leH Al
i' = yoxn - Xoyn A2
i = yrxo - le° A3

These determinants have integral values because they are
composed of integers; and, since division of Al by y'y"
gives i/(y'y") = x'"/y" - x'/y', it is seen that i is posi-

tive because x'/y' < x"/y".

When x°/y° < x'/y', 1" > 0 and i" < O. A4
When x°/y° > x"/y", i' < 0 and 1i" > O. . A5
When x'/y' < x°/y°® < x"/y", 1' > 0 and 1" > O. A6
If x°/y® = x'/y', 1i' = 1 and 1" = 0. A7
If x°/y® = x"/y", 1i' = 0 and 1" = 1i. A8
The converses of these are also true. In particular, when

i' and i'" are positive, A4 and A5 are impossible and x°/y°
is intermediate to x'/y' and x"/y'.

These and many other relationships can be made visibly
evident by displaying the various intervals on a single plot
in which i' and i" are the coordinates of x°/y°. 1In such a
plot, x'/y', with coordinates i' = i and i" = 0, and x"/y",

with coordinates i' = 0 and i" = i, serve as base intervals
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to establish the locations of the other intervals. This is
exemplified in Plot 1, where it is easily seen that intervals
smaller than x'/y' are in the fourth quadrant, intervals lar-
ger than x"/y" are in the second quadrant, and intervals of
intermediate size are in the first quadrant.

Division of A3 by A2 results in

° = (Xo/yo - X'/y')y' A9
(x"/y" - x°/y°)y"

This shows that i"/i' is a function of x°/y° such as to in-

crease from zero to infinity as x°/y° increases from x'/y'

to x"/y". It is also evident that i'"/i' is negative when
x°/y°® is less than x'/y' or greater than x"/y'". A vector
(directed line segment) from the origin (where i' = i'" = 0)

to an interval makes an angle with the horizontal (or i'")
axis whose tangent is i'"/i'. This associates a certain di-
rection with each interval as seen from the origin. We note
that no two intervals have the same direction, for, if they
did, they would have the same frequency ratio.

From Al, A2, and A3, we obtain

x'i' + x"i" = x°1 Al10

y'i' + y"i" = y°i All
Inasmuch as x° and y° are relatively prime, these equations
show us that i is the greatest common divisor of x'i' + x"i"
and y'i'" + y"i"; but a common factor of i' and i" is a com-

mon divisor of x'i' + x"i" and y'i' + y"i" and therefore a

factor of i. Transforming A10 and All to
x"i" = x°i - x'i’ Al12
ynin — in - yli' Al3

shows us that i'" is the greatest common divisor of
x°1 - x'i' and y°1 - y'i' and that a common divisor of i and

i' is a factor of of i". Similarly, a common divisor of i
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x' _2 x' _3 . _

vt oI,y 1 i 1 Plot 1.
5 16 20 28
5 7 11

s 7 | 9 |11 |13 17 |19 |21 | 23 27

1 2 3 4 6 7 8 9 11
A 6 10 14 18 22
1 3 5 7 9
5 5 | 7 11 | 13 17 | 19
1 2 4 5 7 8
5 4 8 12 16
1 3 5 7

1 3| 5| 7] 9|11 |13 | 15

1 2 3 5 6 7

i'" 0 0 %

1 1| 3| 5| 7] 9

1 2 3 4 5
4
_2 §

-3
-4
-4 -3 -2 -1 0 1 2 3 4 5 6
il
and i" is a factor of i'. Thus, a common factor of any two

of these determinants is also a factor of the third; and,
if two are relatively prime, all three are relatively prime,
in pairs as well as all together. This constitutes what we

choose to call a ''rule of common factors." A corollary of
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x' _5 x" _3 . _
Plot 2. '57'7 = a ’ y,, = 5 , i =2
21 3 8 13 18 23
1 5 9 13 17
19
6 ia
5 5 10 15 25
3 7 11 19
11 21
4 5 16
3 2 7 17 22
1 5 13 17
3 13
2 3 10
1 4 9 14 19
3 7 11 15
i 0O 0 %
1 1 6 11 16
1 5 9 13
7
-2 5
8 13
-3 7 i1
-3 -2 -1 0 1 2 3 4 5 6 7
il

this rule is that i or a factor of i is the only possible
common factor of the coordinates of any interval. This is
exemplified in Plots 1 and 2, where i is a prime number and
is the only common factor of any pair of coordinates.

It can be seen from Al thatacommon factor of x' and x"
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is a factor of i and, consequently, that x' and x" must be
relatively prime to each other in order to be relatively
prime to i. Again, because of Al, a common factor of i and
x' is also a factor of y'x"; but it cannot be a factor of
y'; therefore, it must be a factor of x'". Likewise, a com-
mon factor of i1 and x'" is a factor of x'. Thus the three
quantities i, x', and x'" obey the rule of common factors.
Similarly, i, y', and y'" also fall under this rule. Since
x' and y' are relatively prime and x" and y' are relatively
prime, no common factor of x' and x" can be a factor of y'
or y". It follows that a common factor of x' and x" is
relatively prime to any common factor of y' and y'", but both
will be factors of 1i.

o

B. Choosing Coordinates when x° and y° are Not Given

A2 and A3 give us the coordinates of x°/y° when numeri-
cal values are assigned to x° and y°. Interchanging the

sides of Al10 and All and dividing them by i results in

x° = (x'i'" + x"i")/1i Bl

o

yo = (y'i' + y"i")/1 B2
which are the converse of A2 and A3 and therefore give us x°
and y° when numerical values are assigned to the coordinates

i'" and i". Division of Bl by B2 results in
Xo _ X'ii + X”i” _ X! + XHlH/i! B3
yo ytll + y”l” yl + y”l”/l'
which is the inverse of A9 and therefore increases from
x'/y' to x"/y'" as i'"/i' increases from zero (when i'" = 0) to

infinity (when i' = 0). It shows that there is a commensu-
rable ratio of x° to y° corresponding to any commensurable

ratio of i'" to i', but Bl and B2 cannot be satisfied by Jjust
any integral values of i' and i" that express a given ratio.

An arbitrary choice of coordinates could result in values of
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x° and y° that are not relatively prime or, if i > 1, in
fractional values of x° and y°, for which only integral val-
ues are postulated.

A pair of coordinates that yields values of x° and y°
that are both integral and relatively prime is a proper so-
lution (of Bl and B2). A pair of coordinates that yields
integral values of x° and y°, whether relatively prime or

not, is referred to as an integral solution. Coordinates

that result in integral values of x° and y° that are not
relatively prime constitute an unreduced solution, and those
that yield fractional values of x° and y° are called a frac-
tional solution. Unreduced and fractional solutions are to
be rejected. To obtain proper solutions, it is necessary
for i, i', and i" to obey the rule of common factors; but,
even so, there are conditions and choices that can lead to
unreduced or fractional solutions.

The rule of common factors permits two extremes. In
one extreme, the coordinates are multiples of i, and only
i; that is , they are relatively prime except for the common
factor of i. This guarantees integral solutions. The other
extreme employs coordinates that are relatively prime to
each other and to i. When i' and i" do not have a common
factor, x° and y° cannot have one, for A2 and A3 show that
any common factor of x° and y° would also be common to i'
and i". This extreme risks the occurrence of fractional so-
lutions. When i = 1, these extremes are united and, to ob-
tain proper solutions, it is only necessary for the coordi-
nates to be relatively prime as in Plot 1. When i = 2, all
solutions belong to one extreme or the other. Both coordi-
nates must be either even with only 2 as a common factor or
odd without a common factor. The only risk is the possi-
bility of unreduced solutions when i' and i" are both even.

This can be seen in Plot 2, where i' = 2 and i" = 6 would
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%z_% .;5_=% i =3 Plot 3.
12 20
8 = 13
219 13 17
5 8 11
14
6 "9
5 7 11 1
8 16
4 5 11
5 13
3 3 9
2 10
2 1 7
. 3 7 1
2 5 8
i 0 0 %
1 5 9
-1 T 1 7
6
2 5
-2 -1 0 1 2 3 4 5 6 7 8
i!

give x° = 14 and y° = 10. When i > 2, both dangers exist
as we see in Plot 3, where i' = i" = 3 would give the un-

reduced solution x° = 9, y° = 6 or i' =1 and i" = 2 would

3
o

give the fractional solution x° = 14/3, y° = 3.




130 Ch. 4

A basic solution is an integral solution for which
0 <i'" £1and O < i" < i and in which i' and i'" are permit-
ted to have a common factor that is not a factor of i.
While a basic solution may thus violate the rule of common
factors, it does not set the rule aside completely. If one
coordinate has a factor in common with i, the other coordi-

nate must also have this factor; and, if one coordinate is

relatively prime to i, the other coordinate must also be
relatively prime to i. Not requiring that i or a factor of
1 be the only possible common factor of the coordinates per-
mits unreduced solutions that would otherwise be lost. For
each value of i', one value of i" gives a basic solution;

or, for each value of i!", one value of i’ ives a basic
3

solution. As a result, there are i basic solutions. All
the other integral solutions can be obtained from these by
increasing or diminishing either or both coordinates of each
basic solution by multiples of i. Finally, unreduced solu-
tions must be rejected, leaving only proper solutions.

One of the basic solutions is always i' = i" = i,
whence Bl gives x° = x' + X" and B2 gives y° =y' + y". 1If
x° and y° have a common factor, division of i' and i" by
this factor gives another basic solution; and, if this fac-
tor equals i, then i' = i" = 1 is not only a basic solution
but also a proper solution and all the basic solutions are
those in which i' = i" =1, 2, ... 1. This can be seen in

Plots 1, 2, and 3 and is always the case when i = 1 or 2.

The situation may be more complicated when i > 2. Let us

consider the following example:

x" = 3

y' =2, i=4

3

x' =7
y' =86,

Bl: x° (71" + 3i') /4

B2: y° (61' + 2i")/4 = (3i' + i")/2

3



Sec. B 131

i' = 1i" = 4 gives x° = 10 and y° = 8, which have a common

factor of 2. Cancellation of this factor gives the proper
solution i' = i" = 2 with x° = 5, y° = 4. The two remaining
basic solutions can only be i' = 1, i" = 3 with x° = 4,

y® =3 and i' = 3, i" = 1 with x° = 6, y° = 5, both proper
solutions. All the other integral solutions can be obtained
from these four by increasing or diminishing these values of
i' and 1" by multiples of i. Finally, all unreduced solu-
tions are discarded, only proper solutions remain, and they
are shown in Plot 4.

If x' and x'" are relatively prime and therefore rela-
tively prime to i, a proper solution of Bl also satisfies
B2, Let the right side of Bl be substituted for x° in
either A2 or A3, and let the resulting equation be solved
for y°x" or x'y® and simplified by the use of Al. If sub-

stitution is made into A2, the simplified result is

I | R

y x (y'i! -+ y”i”)XH/i B4

If substitution is made into A3, the result is

x'y® = x'"(y'i' + y"i")/i B5
In both of these results, the left side and therefore the
right side is an integer; but, as long as i is relatively
prime to both x' and x'", it must divide y'i' + y"i'". Thus
an integral value of y° is provided, and B4 and B5 reduce to
B2 as they should. B2 can be solved in exactly the same way
if y' and y" are relatively prime, and will give the same
results. If x' and x" are not relatively prime, their com-
mon factor is also a factor of i, cancellation of this fac-
tor simplifies Bl, and not every solution of Bl satisfies B2.
Likewise, if y' and y'" are not relatively prime, not every
solution of B2 satisfies Bl. However, since the common fac-
tor of x' and x" is relatively prime to that of y' and y",

there are still i basic solutions.
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Plot 4. ;‘—:—=—g-’;‘—::=-g-’i=4
6
- 2 9 16
1 7 13
4 2 T
3 5 x
2 i
. 2 i
i" 0 0 :
- —1— ;
-2 %
-2 |-1 | o| 1| 2| 3| 4| 5| 6] 7] s
N

Inasmuch as 1 is relatively prime to all integers, we
can satisfy the rule of common factors and obtain proper so-
lutions by setting one coordinate equal to 1 and selecting
the other relatively prime to i and such that both

x'i' + x"i" and y'i' + y"i" are divisible by i. When i = 1,
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it = 1" = 1 1is always a proper solution. When i > 1, there
is always a proper solution in which i' = 1 and 0 < i" < i
or in which i" = 1 and 0 < i' < i. In either case,

i' + i" < i; and we conclude that, if i is greater than 1,
at least one interval of intermediate size can always be
found the sum of whose coordinates is less than or equal to

i.

C. Conjoint Intervals

Two commensurable intervals are said here to be con-
joint when they are more discernible than any intermediate
interval. Let x'/y' be the smaller commensurable interval,
let x"/y'" be the larger, and let x°/y° be any intermediate
interval as in A6. In Section J of Chapter 3, x° + y° was
identified as the obscurity of the interval x°/y°. Likewise,
X' + y' is the obscurity of x'/y', and x'" + y'" is the ob-
scurity of x'"/y". For x'/y' and x"/y'" to be conjoint, all
intervals x°/y° of intermediate size must satisfy the two
conditions

X' + y' < x° + y° C1l
X"+ y" < x° + y° c2

Inasmuch as x°/y° is intermediate to x'/y' and x'"/y",
i' and i" are positive, and addition of Cl1 multiplied by 1i'

to C2 multiplied by i" results in
(X' + y'i b (x" 4 YT < (x° YA+ i) c3
Addition of A10 and All gives us
(x' + y')i' 4 (x" 4 yiT = (x° 4 yoIi ca
Since the left sides of C3 and C4 are identical,
(x° + y°)(1" + 1i") > (x° + y°)i

and division by x° + y° yields
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il + il’

Ch. 4

> 1 C5

The conclusion of the preceding section shows that at least

one intermediate interval always provides the contrary to

this when i1 is greater than 1;
therefore,
In other words, i =
conjoint.

Let 1 = 1; then,

1 is necessary for x'/y'

because of A6,

i cannot be less than 1;

C5 can be secured only by setting i equal to 1.

and x"/y" to be

That it is also sufficient is proved as follows.

i" > i and 1" > 1

Adding the first of these multiplied by x'

+ y' to the

second multiplied by x'" + y" gives

(X! + yl)i! + (XH + y”)ill

Since the left side of this is
C4

)

(Xl + yl + Xll + y”)i

and cancellation of the common

X! + yl + Xll + yll
Cl and C2 follow directly from
Xl/y!
determinant i equals 1.

Comparison of A2 with

conjoint to x'"/y'" when i
= 1, Let i =

B2 results in

when i' i’ 1;

x° x' +

o

y°o = y' +

Since i' = 1 here
3

XO /yo

X° + y°

increases, and it can be
increases as 1"

more obscure as it

and x"/y" are conjoint when,

Al shows that just as x'/y'
1 so x°/y°

we know from A9 that i"

increases;

increases in size.

“>.: (X! + y! + XH + yll)i C6

identical to the left side of

< (x° + y°)i

factor i leaves

< x° +y° c7
this, and we conclude that

and only when, their

is

is conjoint to x"/y"

then substitution into Bl and

XHill C8

yHiH C9

increases as
seen by adding C8 and C9 that
x° /y°® becomes

The set of intervals

therefore,
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conjoint to and smaller than x'"/y', then, contains one
smallest interval and an unlimited number of intervals of
intermediate size. As their i" coordinate increases, they
become larger, approaching x'"/y'" as a limit, but their ob-
scurity increases without limit.

Comparison of A3 with Al shows that just as x'"/y'" is
conjoint to x'/y' when i = 1 so x°/y° is conjoint to x'/y'
when 1" = 1., Let i = i" = 1; then substitution into Bl and

B2 results in

x? = x'1'" + x" C10
yo - yti! + yu C11
Since i'" = 1 here, we know from A9 that i' increases as

x°/y° decreases, and it can be seen by adding C10 and Cil1
that x° + y° increases as i' increases; therefore, x°/y° be-
comes more obscure as it decreases in size. The set of
intervals conjoint to and larger than x'/y', then, contains
one largest interval and an infinite number of intermediate
intervals. As their 1' coordinate increases, they become
smaller, approaching x'/y' as a limit, but their obscurity

increases without limit.

Inasmuch as x°/y° is conjoint to x"/y" when i' = 1 and
to x'/y' when i" = 1, it must be conjoint to both when
i' = i" =1, Let i = 1i' = i" = 1; then substitution into Bl

and B2 results in

x° = x' + x" Cil2
y® = y' + y" C1l3

which completely determines x°/y° as the one and only inter-
mediate interval that can be conjoint to both base intervals.
This presents us with three mutually conjoint intervals and
shows that there cannot be more than three because, in order
to have more, it would be necessary to be able to find more

than one intermediate interval conjoint to both x'/y' and
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x"/y". Since this x°/y°® is conjoint to the base intervals,
any interval intermediate to it and either base interval
would be more obscure, and we see that x°/y° is the most
discernible interval intermediate to x'/y' and x'/y'". At
most, two intervals can be conjoint to and more discernible
than any given interval, in which case one is smaller and the
other is larger than the given interval, and they are mutu-
ally conjoint.

Equally discernible intervals cannot be conjoint.

Adding O = y'y" - y'y" to Al results in
i — yl(XH + yH) - .(Xl + yl)yn Cl4

It can be verified by consulting Table I, Chapter 3, that,

when x'/y' and x"/y" are equally discernible,

x' +y'=x"+y" 25 and x" - x' =y' - y" > 1. Thus, when
x' +y' =x"+ y" Cl4 gives 1 = (X' + y")(y' - y") 2 5, and
x'/y' cannot be conjoint to x"/y". The corollary follows

that two conjoint intervals cannot be equally discernible,

for, if they were, they would not be conjoint. See Plot 5.
When two intervals are not conjoint, there are always

one or more intermediate intervals that are more discernible

than one or both of the nonconjoint intervals. By C4,

x° + y° = A(i' + i) /1 Cl5
where 1 ty St 1" 1y n
A= Tyl * (k7 ¥yl c16
1+ 1

Here x°/y°® is intermediate to x'/y' and x'"/y'"; therefore, as

in A6, 1' and 1" are both positive, A is an interpolation

between x' + y' and x" + y", and we recognize the following
alternatives: X'+ gy <A< "+ g c17
x" +y" > A > x" + y" C18

x! +y| =A=x"+y” C19
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When x'/y' and x'"/y'" are not conjoint, i > 1, and there is
at least one intermediate interval with i' and/or 1i'" equal
to 1 and i' + i" < i. Identifying x°/y°® with such an inter-
val, we see by Cl5 that x° + y° < A, Cl17 gives

o

x° + y° < x" + y", Cl8 gives x° + y° < x' + y', and C19
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gives x° + y° less than both x' + y' and x" + y" because, as
we see in Plot 5, x°/y° is conjoint to x'/y' or x'"/y'" or

both and conjoint intervals cannot be equally discernible.

D. The Aural Interpretation of Indiscernible Intervals

In accordance with Section J, Chapter 3, we consider an
interval to be discernibly commensurable when its obscurity
is less than or equal to 2N, We consider it to be indiscern-
ible when its obscurity is greater than 2N or when its fre-
quency ratio is incommensurable. Setting N equal to 8 limits
the discernible intervals to the forty listed in Table I,
Chapter 3, but many other intervals are commonly encountered
in musical practice; therefore, it is important to consider
the aural interpretation of the indiscernible intervals.

The smallest discernible interval is the unison, the
largest is a semitone less than four octaves, and the others
are distributed between these in close enough proximity to
each other that any indiscernible interval of less than four
octaves can be said to approximate some discernible interval.
The author is of the opinion that any interval that is not
discernible in itself but which approximates closely enough
the size of a discernible interval partakes of the charac-
teristic sound of the discernible interval and is actually
heard as that interval or, at least, as an approximation
therof. That this theory is not original with the author or
new at this time is evident from the following guotations.
Stumpf:

Very small deviations of vibration frequencies
from the simple ratios of the intervals do not cause
a noticeable change in the degree of fusion. Thus,
if the frequency of one of the tones of the fifth
is slightly changed so that its vibration ratio of
2:3 1is modified its degree of fusion remains that
of the interval 2:3. But if the deviation is in-
creased its fusion becomes that of its neighboring
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interval, without passing through any intermediate
degrees of fusion. An interval retains its degree
of fusion, then, until its vibration ratio is
changed sufficiently so that it becomes a differ-
ent interval, when it assumes the fusion of that
interval. How rapidly this transition occurs de-
pends upon the degree of the initial fusion. This
law holds for all but the lowest degrees of fusion.

Pratt:

For a long time the approximate physical con-
ditions for intervals have been known. Intervals
are determined roughly by the ratios sustained by
the frequencies. But only roughly. Just as pitch

remains constant through small changes of frequency,

so intervals remain unaltered through small changes
of ratio. There is an interval-limen Jjust as there
is a pitch-limen, and the one can not be deduced
from the other. According to recent research the
pitch-limen at 40 decibels between 500 and 4000
cycles is about 5 cents. The limen for interval-
discrimination is very much larger. If observers,
using the method of average error, are asked to
alter the variable member of a pair of tones until
a given interval is reached, the m.v. of the aver-
age settings for all intervals is about 20 cents.
This value must not of course be regarded as final.
The judgment is not an easy one to make, the method
used undoubtedly has an important bearing on the
outcome, and individual differences among observers
may not be negligible. More recent investigations
with an entirely different method and with a larger
number of observers but with only three or four in-
tervals, gave values over 30 cents. Even this dis-
crepancy, however, is not nearly so large as those
whichZhave appeared in studies of pitch-discrimina-
tion.

139

1. As gquoted by Max Schoen, The Psychology of Music, p. 49.
Stumpf defined "fusion'" as experiencing of two elements as
one; Kllpe defined it as the experience of belonging-togeth-

erness. It depends on simplicity of vibration ratio and

appears to be practically synonymous with dicernibleness.

2. Carroll C., Pratt, "Tonal Fusion," Psychological Review,

vol. 41 (1934), p. 95.
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Hindemith:

Our somewhat complicated system of musical
notation has the advantage of giving the singer or
the player (especially of untempered instruments)
in most cases a clear impression of the melodic or
harmonic intentions of the composer. For analysis
of the sound itself, on the other hand, it is not
only worthless but actually a hindrance. TFor in
such analysis our thesis must be that all intervals
and chords are perceived, independently of their
notation, as the ear first hears them, without
reference to what has gone before or what comes af-
ter. The ear does not hesitate, in the course of
this perception, between making all the necessary
calculations of minute interval-differences, on the
one hand, and, on the other, applying to each chord
or interval the measurements derived from the sim-
lest proportions of the overtone series. It always
adopts the latter course, and hears every interval,
even such as do not actually fit, as being of about
the size of one of the intervals that we know from
our two series. An interval whose tones stand only
roughly in the proportions 5:6 is always heard by
the ear as a minor third, whether it is written and
intended by the composer as an augmented second, a
minor third, or a doubly diminished fourth. Aural
analysis thus takes account of no diminished or
augmented intervals except the tritone; it hears
all other intervals as forms of the intervals de-
rived from the first six tones of the overtone
series.3

Recalling that x°/y° represents only commensurable fre-
quency ratios, and desiring a notation that can represent
any frequency ratio, we let x equal the frequency of the
higher tone and y equal that of the lower as in previous
chapters. Then x/y can represent any frequency ratio, com-
mensurable or not. If the ratio is commensurable, a pair of
relatively prime integers x° and y° can always be found such

that x°/y° = x/y D1

3. Paul Hindemith, The Craft of Musicl Composition, Book I,
pp. 93-94. The "intervals that we know from our two series"
are the familiar ones of the Western musical scale.
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and g = x/x° =y/y° D2

Let x/y be any indiscernible interval, let x'/y' be the
largest discernible interval smaller than x/y, and let x'"/y"
be the smallest discernible interval larger than x/y unless
x/y is larger than any discernible interval, in which case

let x"/y" be the hypothetical interval 1/0. Then

x'/y' < x/y < x"/y" D3
x'" +y' < 2N D4
x'" + y" < 2N D5
and, since no discernible interval is intermediate to x'/y'
and x'"/y'", they are conjoint and can be referred to as con-

secutive discernible intervals.

According to the theory advanced here, x/y must be in-
terpreted as an approximation of either x'/y' or x'/y". If
Xx/y is heard as being x'/y', then x'/y' is referred to as
its interpretation; if x/y is heard as an approximation of
x"/y", we call x"/y" its interpretation. The intermediate
interval may be called a tuning (or a mistuning) of the dis-
cernible interval that it approximates. As a tuning, it is
subject to qualification as to accuracy, recognizability,
and acceptability.

As an aid to relating Stumpf's words to our own, the
author suggests that by '""interval' he means what we call a
discernible interval and that his term '"fusion' designates a
quality that we relate to the discernibleness and character-
istic sound of the '"interval.'" Thus understood, he appears
to be concerned with the question as to when x/y approxi-
mates x'/y', when it approximates x'"/y'", and how rapidly the
interpretation of x/y changes as it passes from x'/y' to
x"/y". Certainly, the development and application of our

theory depend on a precise answer to this question. Since
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the ear cannot judge whether an indiscernible interval is
commensurable or not, what enables it to make the distinc-
tions demanded here? In answer, we point to the character-
istic sound of the interpretation, to a sense of the size of
an interval (which, as Pratt observed, is not very accurate),

and to the beats that are heard in a mistuned interval.

E. Beats and the Point of Division

The phenomenon of beats is of decisive importance in
discerning the interpretation of a given indiscernible in-
terval. Since x/y is intermediate in size to two consecu-
tive discernible intervals, two rates of beating are present,
but the slower beats predominate in the listener's experi-
ence. As a result, x/y is interpreted as a mistuning of the
discernible interval that gives rise to the slower beats.

Let mx + ny and m'x + n'y be any two tones in the aural

spectrum of x/y that coincide when x/y = x'/y' but which

differ in frequency when x/y > x'/y'. Then

mx' + ny' = m'x' + n'y'
or (m - m')x' = (n' - n)y' El
Inasmuch as (m - m')x' and (n' - n)y' are equal integers,

they have the same factors; and, since y' is a factor of

(n' - n)y', it must also be a factor of (m - m')x'. But x°'
and y' are relatively prime; therefore, y' is a factor of
m-m'. Thus m - m' = ky', and, because of El, n'- n = kx',
where k is the greatest common divisor of m - m' and n' - n
as was seen to be the case in Chapter 3, Section C. The
difference between mx + ny and m'x + n'y is

f - f'"=(m-m")x - (n' - n)y, and substitution of ky' for

m - m' and kx' for n' - n gives
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f - £ k(y'x - x'y) = kg" E2
where gl =y'x - x'y E3

Recalling that k is a positive integer, we note that
different values of k arise from considering different pairs
of spectral tones in one coincidence, those lying nearest
each other in the approach to a coincidence giving k = 1.

It follows that the difference in frequency between adjacent
tones in a near coincidence equals g''. Since this is the
frequency difference between any pair of adjacent tones in
the spectrum of x/y, then all pairs of adjacent spectral
tones have the same frequency difference in any one inter-
val. When x/y is only slightly greater than x'/y', this
frequency difference gives rise to the beats that are heard
in the proximity of a discernible interval, and g" is the
rate of beating.

Likewise, g' = yx" - xy" E4
and equals the difference in frequency between tones in the
spectrum of x/y that coincide when x/y = x"/y" and are ad-
jacent when x/y < x"/y". When x/y is slightly less than
x"/y", g' is the rate of beating.

When g'" < g', g" predominates, E3 and E4 give

y'x - x'y < yx" - xy"
(y'+ y")x < (x'+ x'")y
X/y < (x'+ x")/(y'+ y'") ES
and x/y 1s heard as an approximation of x'/y'. When g' < g",
g' predominates,
(x'+ x")/(y'+ y") < x/y E6
and x/y is heard as an approximation of x'"/y'". Because of

this, (x'+x")/(y'+ y") is found to be a point in the tran-
sition from x'/y' to x"/y" on one side of which x/y is heard
as a tuning of x'/y' and on the other side of which x/y is
heard as a tuning of x"/y". In itself, (x'+ x")/(y'+ y") is

"neutral" because it may be interpreted as a tuning of either
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x'/y' or x"/y" altho it is recognizable as neither. TFor
these reasons, we call it the point of division between the
consecutive discernible intervals that it separates. For
convenience, we let x° = x'+ x'" and y° = y'+ y" as in C12
and C13; then x°/y° is the point of division. Since x'/y'
and x"/y" are consecutive discernible intervals and x°/y° is
intermediate to them, x°/y° cannot be discernible, but it is
nevertheless the least obscure interval intermediate to
x'/y' and x"/y".

This information makes possible the construction of
Table I, wherein all the discernible intervals and the
points of division are listed in the order of increasing
size. Inasmuch as N is not given one fixed value here,
allowance is made for it to be either 7 or 8. Thirty-two
intervals are discernible with N = 7, and these are among
the forty that are discernible with N = 8. Six of the in-
tervals that are points of division with N = 7 and two new
large intervals become discernible when N is increased to 8.
Three of the points of division are recognizable as being
familiar intervals. The major second with frequency ratio
9/8 divides the unison from 8/7; the minor seventh 16/9 di-
vides 7/4 from 9/5; and the perfect fourth plus two octaves
16/3 separates 5/1 from 11/2. Under ordinary circumstances,
these intervals, being indiscernible, cannot be tuned di-
rectly by ear; but they can be obtained indirectly by adding
and subtracting other intervals. Most of the points of di-
vision, however, are not familiar, are not easily obtained,
and are of little interest in themselves.

The view formulated here agrees in part and differs in
part with Hindemith, who says that the intervals 5/4, 6/5,
7/6, 9/7, 11/9, and 81/64 (the Pythagorean third, 408 cents)
are all heard as thirds, that 'we cannot say just where the

change from a minor third to a major third takes place," and
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Table I

Discernible Intervals and Points of Division

Sizes of intervals are in the first column;
are in the columns corresponding to the value of N and the

resulting classification of the intervals.

frequency ratios

Size in
cents Disc. of div.|Disc. of div.
0 1/1 1/1
204 9/8
231 8/7 8/7
248 15/13
267 7/6 7/6
289 13/11 13/11
316 6/5 6/5
347 11/9 11/9
386 5/4 5/4
418 14/11
435 9/7 9/7
454 13/10
498 4/3 4/3
551 11/8 11/8
583 7/5 7/5
617 10/7 10/7
702 3/2 3/2
782 11/7 11/7
814 8/5 8/5
841 13/8 13/8
884 5/3 5/3
933 12/7 12/7
969 7/4 7/4
996 16/9 16/9
1018 9/5 9/5
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Table I, Continued

Size in N =7 N =8
cents Disc. int, |Pt. of div.|Disc. int. |Pt. of div.
1049 11/6 11/6
1200 2/1 2/1
1339 13/6
1365 11/5 11/5
1382 20/9
1404 9/4 9/4
1431 16/7 16/7
1467 7/3 7/3
1516 12/5 12/5
1586 5/2 5/2
1654 13/5 13/5
1698 8/3 8/3
1729 19/7
1751 11/4 11/4
1783 14/5
1902 3/1 3/1
2041 13/4 13/4
2084 10/3 10/3
2119 17/5 17/5
2169 7/2 7/2
2218 18/5 18/5
2249 11/3 11/3
2288 15/4 15/4
2400 4/1 4/1
2505 17/4
2539 13/3 13/3
2565 22/5
2604 9/2 9/2
2667 14/3 14/3
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Table I, Continued
Size in N=7 8
cents Disc. int. [Pt. of div.|Disc. Pt. of div.
2786 5/1 5/1
2898 16/3 16/3
2951 11/2 11/2
3003 17/3 17/3
3102 6/1 6/1
3196 19/3
3241 13/2 13/2
3284 20/3
3369 7/1 7/1
3488 15/2 15/2
3600 8/1 8/1
3705 17/2 17/2
3804 9/1 9/1
3898 19/2 19/2
3986 10/1 10/1
4071 21/2 21/2
4151 11/1 11/1
4228 23/2 23/2
4302 12/1 12/1
4373 25/2 25/2
4441 13/1 13/1
4506 27/2
4569 14/1
4630 29/2
4688 15/1
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that "in the middle space between the outside boundaries
there is a field that can belong to either third, and is
assigned by the ear to the major or the minor according to
the harmonic or melodic context."4 We know from the quota-
tion in Section D that, in agreement with us, Hindemith re-
gards 6/5 as the ideal tuning of the minor third. Doubtless
he also regards 5/4 as the ideal major third and 81/64 as a
deviation therefrom. The author believes, however, that we
can say that the change from a minor third to a major third
takes place at 11/9 and that this interval has the qualities
that Hindemith ascribes to a '"field in the middle space be-
tween the outside boundaries." The'author says moreover
that, being an independently discernible interval, 7/6 is
not to be confused with the minor third and, as either a
discernible interval or a point of division, 9/7 is distin-

guishable from the major third.

F. Nuclei

Two consecutive discernible intervals and their point
of division constitute a nucleus of three mutually conjoint
intervals. Let x°/y° be the point of division between x'/y'
and x"/y'" as in Section E. Then, because of the mutual con-

jointness of these three intervals,

i = leH - len = 1 F1
it = yox" - x°y" =1 F2
i" = y'x° - x'y® =1 F3

The intervals by which these intervals differ are as

follows:

4. Paul Hindemith, The Craft of Musical Composition, Book I,
pp. 71-72.
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(Xll/yﬂ)/(xl/y!) — (y!xli)/(xlyﬂ) — (leH + 1)/(lell) F4
= the interval by which x'"/y" exceeds x'/y'.

(x"/y")/(x°/y®) = (y°x")/(x°y") = (x°y" 4+ 1)/(x°y") F5
= the interval by which x'"/y" exceeds x°/y°.
(x°/y°)/(x"/y') = (y'x°)/(x'y°) = (x'y° + 1)/(x'y?) F6
= the interval by which x°/y° exceeds x'/y'.
In the frequency ratio of each of these three latter inter-
vals, the numerator exceeds the denominator by 1. Because
of this, they are known as superparticular ratios, and the
numerator and denominator are relatively prime in each
interval.

Equations F4 thru F6 plainly show how the superparticu-
lar intervals are obtained from the conjoint intervals. The
inverse operation is simply a matter of noting the greatest
common divisors of various numerators and denominators. For
example, x° is the greatest common divisor of x°y" and y'x°
and y° is that of y°x" and x'y®°. This process yields the
original conjoint intervals and no others. Thus, every nu-
cleus proves to be unique and can be identified as well by
the superparticular intervals as by the conjoint intervals.

F5 and Cl2 give us

(x"/y")/(x°/y®) =1 + 1/(x°y")
F6 and Cl13 give us

(x°/y°)/(x'/y") =1 +1/(x'y®) =1+ 1/(x'y" + x'y') F8
and the relative values of these two intervals depend on the

Il
It

1 + 1/(X|y” + XHyH) F7

relative values of x"y'" and x'y'. Recalling Fl enables us

to make the following observations:

When y' < y", then x' < x", x' + y' < x" + y",

x'y' < x"y", and (x"/y")/(x°/y®) < (x°/y°)/(x"/y") F9
When x' > x", then y' > y", x' + y' > x'" + y",

x'y' > x"y", and (x"/y")/(x°/y°) > (x°/y°)/(x"/¥y") F10

F1 does not permit y'> y" when x' < x'", for then
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y'x" - x'y" > x" - x! 2 1, therefore, F9 and F10 are the
only possibilities.

This reminds us that the conjoint intervals x'/y' and
x'""/y" cannot be equally discernible and demonstrates that
(x"/y")/(x°/y°) and (x°/y°)/(x'/y') cannot be equal, the
interval by which the point of division differs from the
more discernible base interval being the larger. In refer-
ring to the change in the interpretation of x/y as it passes
from x'/y' to x"/y", Stumpf says, "How rapidly this transi-
tion occurs depends upon the degree of the initial fusion."
We find that the size of (x"/y")/(x°/y°) relative to that of
(x°/y°)/(x"'"/y"'), therefore the rapidity of the transition,
does indeed depend upon the discernibleness (or fusion) of
one base interval relative to that of the other.

The size in cents of any interval x/y is M log (x/y),
where M = 1200/log 2 F11

and may be referred to as the modulus for conversion to
cents. This expression for the size of X/y holds regardless
of the base used for the logarithms. If the base 10 is used,
M = 3986.314; if the base e is used, M = 1731.234.

A nucleus of two consecutive discernible intervals and
their point of division together with their differences in

cents can be displayed in a diagram of the following type:

M log [(x"/y")/(x'/y")]

i
x'/y' X:/y° x"/y"
L | J

M log [(x°/y°)/(x'/y")] M log [(x"/y")/(x°/y°)]

When actual numbers are given, successive nuclei may be
linked together so as to display more than two consecutive
discernible intervals with their points of division. Dia-
gramming eight successive nuclei of Table I in this way

results in
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This diagram shows that the intervallic differences are by
no means uniform. (x"/y")/(x'/y') varies from one nucleus
to another; and, even when it is the same in different
nuclei, (x"/y")/(x°/y°) and (x°/y°)/(x'/y') are not the
same. It is also observable that the intervallic differ-
ences between a discernible interval and the adjacent points
of division are usually greater when the interval is more
discernible.

In contrast to this, a plot in which the base intervals
are a pair of consecutive discernible intervals (Plot 6 for
example) suggests the arc tan (i'"/i'), noted in connection
with A9, as a measure of the intervallic differences within
a nucleus that uniformly places the base intervals 90° apart
and the point of division midway between them.

If x°/y° = x'/y' as in A7, arc tan (i'"/i') = 0°.

If x°/y° = x"/y" as in A8, arc tan (i"/i') = 90°.

If x°/y°® is the point of division as in F2 and F3,

arc tan (i"/i') = 45°, which is exactly halfway between
0° and 90°.
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Plot 6. X' _ >3 x'" _ 7 -
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G. Recognizability gi Tunings

In Chapter 3, x/y was equal to x°/y°, but here it is
not necessarily so. When x°/y° was designated as the point
of division, x/y was left free to be any interval. In order
to relate x/y in a uniform way to the three mutually conjoint
intervals of our nucleus, we adopt g'"/g' in place of i"/i'
and use arc tan (g'"/g') as a measure of x/y's relationship to
x'/y', x°/y°, and x"/y". Dividing E3 by E4 results in
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gl yX” _— Xy” (XH/yH —X/y)y”
which, by comparison with A9, is seen to be equvalent to

g!! _ y'X —_ Xiy _ (X/y __X!/yl)yl Gl

i"/i' when x/y = x°/y°. Arc tan (g'"/g') increases from O°
to 90° as x/y increases from x'/y' to x"/y" and equals 45°
when xX/y matches the point of division. Let Arc denote this

angle; then . . _ .. (.- (g"/g") G2

Arc is a measure of the recognizability of a tuning,
that is, the recognizability of an indiscernible interval as
an approximation of a discernible interval. The author pro-
poses to rate the recognizability of a tuning according to

the value of Arc as follows:

Value of Arc Interpretation Recognizability
0° to 15° x'/y' Good (easy)
15° to 30° x'/y' Fair (moderate)
30° to 45° x'/y' Poor (hard)
45° to 60° x'"/y" Poor (hard)
60° to 75° x"/y" Fair (moderate)
75° to 90° x"/y" Good (easy)
Table I serves as a guide to the interpretation of any
given interval. For example, let us consider the Pythagorean
ma jor sixth, with frequency ratio 27/16. Its size, 906

cents, makes it intermediate to the discernible interval 5/3
and the adjacent point of division 12/7 as can also be seen
in Plot 6. Accordingly, its interpretation is 5/3, and Arc
is 14 degrees. For this interval and certain other indis-
cernible intervals of the diatonic scale in Pythagorean tun-
ing, Table II lists the size in cents, the frequency ratio,
the base intervals, the interpretation as determined from
Table I, and Arc in degrees. For most intervals, the base
intervals obtained with N = 8 are the same as those obtained

with N = 7. 1In cases in which they are not, those obtained
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Table II

Interpretations and Values of Arc of Certain Intervals
of the Diatonic Scale in Pythagorean Tuning

For most intervals, the base intervals obtained with N = 8
are the same as those obtained with N = 7, In cases in
which they are not, those obtained with N = 7 are used. The
asterisks mark the interpretations of the given intervals.

Name of Size in Base intervals Arc in
interval cents %]y X' /y' | x"/y" degrees
Min. 3rd 294 .13 32/27 7/6 *6/5 56.31
Maj. 3rd 407 .82 81/64 *5/4 4/3 17.10
Dim. 5th 588.27 1024/729 *7/5 3/2 6.97
Aug. 4th 611.73 729/512 *7/5 3/2 38.03
Min. 6th 792.18 128/81 3/2 *8/5 58.39
Maj. 6th 905.87 27/16 *5/3 7/4 14.04

with N = 7 are used. The asterisks mark the interpretations
of the given intervals.

According to these values of Arc, the Pythagorean thirds
and sixths rate as follows:
1. The minor intervals are hardly recognizable as tunings of
the corresponding pure intervals.
2. The major third affords fair recognizability of its
interpretation.
3. The major sixth is easily recognized as a tuning of its
pure counterpart.
By far, the best rating goes to the diminished fifth as a
tuning of 7/5, but this interval has not been favored by the
theorists. It may have been confused with its inversion,
the augmented fourth, which is only 23.46 cents larger and
yet is a very poor tuning of the same interval.

This simple and ancient tuning is based on the principle
that the octaves, perfect fifths, and perfect fourths are all

pure. This results in the thirds and sixths being mistunings
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of their pure counterparts as was observed by Alexander Mal-
colm, who wrote around 1721 that ''some and even the General-
ity ... tune not only their octaves, but also their 5ths as
perfectly ... Concordant as their ear can judge, and conse-
quently make their 4ths perfect, which indeed makes a great
many Errors in the other Intervals of 3rd and 6th.”5 These
"Errors' can hardly be anything other than the deviations of
these intervals from their interpretations. For these par-
ticular intervals, the deviations are all 21.5 cents; but
the values of Arc are all different, ranging from 14.0 to
58.4 degrees and affecting the minor intervals much more ad-
versely than the major.

Lowering the tones A, E, and B each a syntonic comma
converts the C-major diatonic scale from the Pythagorean to
the just tuning. Then all of the thirds and sixths are pure
except D-F and F-D, and four new indiscernible intervals ap-
pear. These are listed in Table III, where we find that the
just augmented fourth is practically equal to the Pythago-
rean diminished fifth and the just diminished fifth differs
but little from the Pythagorean augmented fourth, the dif-
ference in both cases being the schisma, 1.954 cents. This
could be confusing. The large perfect fourth A-D and small
perfect fifth D-A are easily recognized as tunings of the
pure intervals but have always been considered unacceptable
because of their dissonance.

Whatever tuning system is employed, four perfect fifths
minus two octaves make a major third. In Pythagorean tuning,
the fifths are pure but the third is a comma too large. In
Just intonation, three of the fifths and the third are pure
but one of the fifths is a comma too small. In meantone

temperament, the third is pure but all four of the fifths

5. J. Murray Barbour, Tuning and Temperament, pp. 3 and 4.




Table III

Interpretations and Values of Arc of Four Intervals
of the Diatonic Scale in Just Intonation

The asterisks mark the interpretations of the given intervals.

Name of Size in Base intervals Arc in
interval cents , ; U degrees
X[y x"[y' | x"/y

Large

per. 4th 519.55 27/20 *¥4/3 7/95 11.31

Aug. 4th 590.22 45/32 *7/5 3/2 9.46

Dim. 5th 609.78 64/45 *7/5 3/2 35.54

Small ,

per. 5th 680.45 40/27 7/5 *3/2 84.81
are % comma too small. Table IV lists the interpretations

and values of Arc of ten intervals of meantone temperament.
The major third and minor sixth are perfectly tuned, and
seven other intervals are very easily recognizable approxi-
mations of their interpretations. On the other hand, the
diminished fifth must be interpreted as a tuning of the per-
fect fifth, but it is hardly recognizable as such. Of the
seven, four (min. 3rd, per. 4th, per. 5th, and maj. 6th) ap-
proximate familiar intervals of just intonation, and three
(the augmented intervals) approximate frequency ratios in-
volving the number 7, It is curious that musical theory did
not recognize these ratios even tho meantone temperament was
generally accepted for keyboard instruments for two hundred
years,

Meantone temperament gives us a chromatic scale without
enharmonic equivalents. Even if the scale is extended be-
yond twelve tones, enharmonic tones do not have the same
pitch. Consequently, the augmented second is not equivalent
to a minor third, the diminished fourth does not sound like

a major third, and so forth. An advantage realized by this
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Table IV

Interpretations and Values of Arc of Ten
Intervals of Meantone Temperament

The asterisks mark the interpretations of the given intervals.

Name of Size in Base intervals Arc in
interval cents ; ; o degrees
x/y x'/y'| x"/y

Aug. 2nd 269.21 1.16824 *7/6 6/5 3.40
Min. 3rd 310.26 1.19628 7/6 *¥6/5 84.02
Maj. 3rd 386.31 1.25 *¥5/4 0
Per. 4th 503.42 1.33748 *4 /3 7/5 2.28
Aug. 4th 579.47 1.39754 4/3 *¥7/5 86.35
Dim. 5th 620.53 1.43108 7/5 *3/2 48.43
Per. 5th 696.58 1.49535 7/5 *¥3/2 88.88
Min. 6th 813.69 1.6 *¥8/5 0
Maj. 6th 889.74 1.67185 *5/3 7/4 2.85
Aug. 6th 965.78 1.74693 5/3 *¥7/4 87.08

temperament is the harmonious sound of the chords of the
augmented sixth such as EbGBbC# and BADFG#.

Table V lists interpretations and values of Arc of
twelve intervals of the equally tempered scale. The thirds
and sixths of this tuning rate much better than those of the
Pythagorean tuning but worse than those of meantone tempera-
ment, the minor intervals being moderately recognizable as
6/5 and 8/5 and the major intervals being easily recogniza-
ble as their interpretations. The augmented fourth and the
diminished fifth have been merged into one interval that is
only fairly recognizable as 7/5. The deviation of the per-
fect fourth and fifth is only 1.955 cents in magnitude,
which can safely be identified with the schisma and makes
them highly accurate tunings of the pure intervals.

Equal temperament gives us a chromatic scale with a
multiplicity of names for every tone and consequently enhar-

monic equivalents for every interval. This multiplicity
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Table V

Interpretations and Values of Arc of Twelve
Intervals of the Equally Tempered Scale

For most intervals, the base intervals obtained with N = 8
are the same as those obtained with N = 7. 1In cases in
which they are not, those obtained with N = 7 are used. The
asterisks mark the interpretations of the given intervals.

Name of Size in Base intervals Arc in
interval cents ' . 0 e degrees
x/y x'/y x"/y

Min. 2nd 100 1.05946 *1/1 7/6 5.28
Maj. 2nd 200 1.12246 *1/1 7/6 24.78
Min. 3rd 300 1.18921 7/6 *¥6/5 68.25
Maj. 3rd 400 1.25992 *5/4 4/3 10.21
Per. 4th 500 1.33484 ¥4 /3 7/5 .79
Dim. 5th 600 1.41421 *7/5 3/2 22.50
Per. 5th 700 1.49831 7/5 *3/2 89.61
Min. 6th 800 1.58740 3/2 *8/5 70.18
Maj. 6th 900 1.68179 *5/3 7/4 9.44
Min. 7th 1000 1.78180 7/4 *¥9/5 54 .41
Maj. 7th 1100 1.88775 9/5 *¥2 /1 75.65
Octave 1200 2. *¥2 /1 0

enables the musician to make notational distinctions proper
to the Pythagorean or the meantone system even when they do
not affect the actual sound.

So far in this section, we have been concerned with de-
termining the recognizability of a given tuning. Let us now
give brief consideration to determining the largest and
smallest intervals that have a given degree of recognizabil-
ity. From G2, g"/g' = tan Arc G3
and, from E3, E4, and F1,

X'g' + X”g” = x G4
ytgx + yngn =y G5

Division of G4 by G5 leads to



Sec. H 159

§ _ Xlgl + X“g” - Xl + X!Ig!!/gl
y ylgl + yllgﬂ yl + y!!gll/gl
- x' + x" tan Arc ce
y' + y'" tan Arc

This equation gives the largest interval that has a given
recognizability when 0° < Arc < 45° and x'/y' is the given
discernible interval. It gives the smallest such interval
when 45° < Arc < 90° and x"/y" is the same discernible
interval. For example, let us determine the largest and
smallest intervals that are easily recognizable as tunings
of 3/2. We set Arc = 15°, x' = 3, y' = 2, x" = 8, and

y" = 5. Then G6 yields as the largest interval x/y = 1.54
or M log (x/y) = 748 cents. To get the smallest interval,
x'"=7,y' =25

we set Arc = 75° x'" = 3, and y" = 2. Then

) ) )

G6 yields x/y = 1.46 or M log (x/y) = 655 cents. Any inter-
val between these two in size should be easily recognizable

as a tuning of 3/2.

H. Pseudo Nuclei

Let x'/y' and x"/y" be conjoint to x°/y° and possibly

but not necessarily conjoint to each other. Then i > 1,

i'" = 4i" = 1, Bl and B2 become
x° = (x' + x")/1 H1
ye o= (y' +y"/i H2

and addition of these two equations results in

Q

x° +y® = (x'" +y" +x"+ y")/i H3

When i = 1 as in Plot 1, x° +y° is greater than either

x'" + y' or x" + y'", and these intervals constitute a true
nucleus of three mutually conjoint intervals as in Section F.
When i = 2 as in Plot 2, x'/y' and x'"/y" are not conjoint,

but they still cannot be equally discernible, and x° + y°
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has a value between x' + y' and x" + y'". When i > 2 as in
Plot 3, x° + y° lies between or is less than x' + y' and

x" + y"., x'/y' and x"/y'" are already known as the base in-
tervals, x°/y° will be called the apex, and all three may be
referred to collectively as '"the conjoint intervals'" even
tho the base intervals may not actually be conjoint. When

i > 1, these intervals constitute what we call a pseudo nu-
cleus here, because the relationships therein are similar to
yet different from those in the true nucleus.

Inasmuch as x°/y° is conjoint to both base intervals,
all intervals intermediate in size to x°/y° and either base
interval are more obscure than x°/y°. It follows that x°/y°
is the most discernible interval intermediate to x'/y' and
x'""/y" regardless of whether the nucleus is true or pseudo.
In the preceding three sections, x°/y° was the point of di-
vision between consecutive discernible intervals, and the
nucleus was true. Alternately, the apex can represent a
discernible interval, in which case x'/y' and x'"/y" are not
consecutive discernible intervals and may or may not be con-
joint.

The intervals by which the '"conjoint'" intervals differ
are as follows:

(x"/y")/(x"/y) = (y'x")/(x'y") = (x'y" o+ 1)/ (x'y") H4
the interval by which x"/y" exceeds x'/y' and is

either not a superparticular ratio or must be reduced to
lowest terms to be recognized as such when i > 1. As in F5S
and F6,
(x"/y")/(x°/y°) = (y°x")/(x°y") = (x°y" + 1)/(x°y") H5
= the interval by which x"/y' exceeds x°/y°.
(x°/y°)/(x"/y') = (y'x°)/(x'y°) = (x'y° + 1)/(X'Y°) H6
the interval by which x°/y° exceeds x'/y'.

i

The frequency ratios of these two latter intervals are
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always superparticular and cannot be reduced to lower terms,
but all three are loosely called here 'the superparticular
intervals' regardless of the value of i.

The conjoint intervals completely determine the super-
particular intervals whether the nucleus is true or pseudo,
but the superparticular intervals do not uniquely determine
the conjoint intervals when pseudo nuclei are permitted.

Let the three superparticular intervals of a nucleus be giv-
en, let a be the greatest common divisor of x' and x", and
let b be that of y' and y'". Then it is evident from Al that
a and b are factors of i and that a = b = 1 when i = 1.
Whatever the value of i, bx° is the greatest common divisor
of x°y" and y'x°, and ay®° is that of y°x'" and x'y®. Once
ay® and bx° have been picked out, the choice of a and b must

be guided by the relations

1

A

a £ ay® H7
1 < b < bx° H8

Choosing a and b immediately determines x° and y°, and di-
viding appropriate terms of the given superparticular inter-
vals by x° or y° yields the terms of the base intervals. It
will be found that ab is the greatest common divisor of y'x"
and x'y" and may be used to reduce their ratio to lowest
terms.

Examples of different nuclei with identical superparti-
cular intervals are given in Table VI. The superparticular
intervals of the true nucleus No. 1 are duplicated by those
of the pseudo nucleus No. 2 -- evident inasmuch as
45/40 = 9/8. The superparticular intervals of the true nu-
cleus No. 3 are duplicated by those of the pseudo nuclei
Nos. 4 thru 7. 1In the pseudo nuclei Nos. 8 thru 10,
y'x"/x'y" i1s not superparticular. In Nos. 11 thru 13,

y'x"/x'y" is recognizable as superparticular when reduced to
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Ta

ble VI

Different Nuclei with Identical
Superparticular Intervals

Ch. 4

The superparticular intervals are the same in Nos. 1 and 2,

in Nos. 3 thru 7, in Nos. 8 thru 10, and in Nos. 11 thru 13.
Conjoint intervals Superparticular intervals
No albl i X'/Y' XO/yo X”/Y” Y'XO /vao y'x”/x'y" yoxn/xoyn
141111 4/3 7/5 3/2 21/20 9/8 15/14
2 1151115} 20/3 7/1 |15/2 21/20 45/40 15/14
3411111 5/2 8/3 3/1 16/15 6/5 9/8
4 (11122 5/4 4/3 3/2 16/15 12/10 9/8
51311 3|l 15/2 8/1 9/1 16/15 18/15 9/8
6 1131216] 15/4 4/1 9/2 16/15 36/30 9/8
7 1131412fl 15/8 2/1 9/4 16/15 72/60 9/8
41112 5/3 7/4 9/5 21/20 27/25 36/35
9il271]4) 10/83 7/2 |18/5 21/20 54/50 36/35
10 {{411] 8| 20/3 7/1 136/5 21/20 108/100 36/35
11 {1313 6/5 5/4 9/7 25/24 45/42 36/35
12 [1411] 4 8/5 5/3 |12/7 25/24 60/56 36/35
13 16|11 6| 12/5 5/2 |18/7 25/24 90/84 36/35

15/14, but these are pseudo nucleil nevertheless because

i > 1.

Since H5 and H6 are small intervals,

the approximation

B4 of Chapter 2 may be applied to them; and, since they are

superparticular ratios,

In[ (x"/y")/(x°/y°)]

the

R

In[(x°/y°)/(x"/y'")] &

Inasmuch as superparticular

lower terms, y°x" + x°y" is

results are surprisingly simple:

2/(y°x" + x°y")

2/(y'x° + x'y%)

H9

H10

ratios cannot be reduced to

the obscurity of HS,

y'x® + x'y®

is that of H6, and we can say that the sizes of these inter-

vals (and indeed the sizes of all small superparticular in-

tervals) are reciprocally proportional to their obscurities.
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Division of H9 by H10 gives

M 1Og [(X”/ys)/(xo/yo)] > po t Xy H11
M log [(x°/y°)/(x"/y"')] yox'"" + x°y"
yox' + x°y'! o <! + 1
but yox" + xoy" X" + y" H12
when (x° - y°)i is small
YOXY + Xoyl ;X, + yl - (XO — yO)i
for pon T Xoyn T X"+ yu 1+ (yoxn T x°y“)(x' + gy H13

and it is seen that, to a limited degree of accuracy, the
intervallic differences between the apex and the base inter-
vals of a nucleus are reciprocally proportional to the ob-

scurities of the base intervals.

I. Accuracy of Tunings

If x/y is not an exact tuning of its interpretation, it
may be said to deviate therefrom. Let Q be the frequency
ratio of the interval of deviation. Then Q equals x/y di-
vided by the frequency ratio of its interpretation. If it

is a tuning of x'/y',

Q= (x/y)/(x"/y") = (y'x)/(x'y) I1
and substitution into this from G6 gives
_y'(x' + x" tan Arc)
whence 1 Q< (vy'x°)/(x'y%)
when 0 { Arc ¢ 45°.

If x/y is a tuning of x'"/y",
Q= (x/y)/(x"/y") = (y"x)/(x"y) I3
and substitution into this from G6 gives

x'" tan Arc) 14
y'' tan Arc)
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whence (y"x°)/(x"y°) £ Q <1
when 45° < Arc £ 90°.

If x°/y° is.a discernible interval (the interpretation of

x/y) and x'/y' and x'"/y'" are the adjacent points of division,

Q= (x/y)/(x°/y°) = (y°x)/(x°y) I5
and (x"/y'")/(x°/y°) £ Q< (x"/y")/(x°/y°) 16
G6 is not applicable in this case, but it is still true that

1

I

Q when 0 £ Arc £ 45°
and Q < 1 when 45° £ Arc £ 90°.

When Q < 1, M log Q < O but still gives the proper size

(or amount) of the deviation, for

log Q = -log (1/Q) 17

In other words, the magnitude of the deviation is given by
the absolute value of M log Q, and the direction of the.
deviation is given by the sign of M log Q. The deviation is
an accepted measure of the accuracy of a tuning, the tuning
being exact when Q = 1 (and M log Q = 0).

The accuracy required to provide good recognizability
of a tuning varies according to the interval being tuned,
but it can be easily determined by I2 and I4. If
15°. If
75°. Table VII

lists tunings and deviations thus obtained for discernible

il

x'/y' < x/Jy < x°/y°, 12 is used with Arc

x°/y°® < x/Jy < x"/y", 14 is used with Arc

intervals from the unison to the octave in size. It is to
be observed that in general the deviations are greater for
the more discernible intervals and less for the more obscure
ones. The deviation of least magnitude is -8.51 cents for
9/5 when Arc = 75°, It follows then that recognition will

be easy for any deviation of less than 8.5 cents in magnitude.
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Table VII

Tunings and Deviations that Correspond
to the Limits of Easy Recognition

Disc. M log M log Disc. M log M log
int.| Arc (x/y) Q int.| Arc (x/y) Q
1/1 0° 0 0 75° 655.03| -46,93

15° 169.33| 169.33 3/2 0° 701.96 0

15° 747.65 45.69
75° 256.27| -10.61

7/6 0° 266.87 0 75° 803.18| -10.51
15° 275.88 9.01 8/5 0° 813.69 0
15° 823.65 9.96
75° 303.90] -11.74
6/5 0° 315.64 0 75° 862.85, -21.51
15° 328.33 12.69 5/3 0° 884 .36 0

15° 907.00 22.64
75° 368.85] —-17.46
5/4 0° 386.31 0 75° 954.98| -13.85
15° 405.52 19.21 7/4 0° 968.83 0

15° 981.19 12.37
75° 469.33| -28.72

4/3 0° 498.04 0 75° | 1009.09 -8.51
15° 524.56 26.52 9/5 0° | 1017.60 0
15° | 1027.35 9.76
75° 571.06] -11.46
7/5 0° 582.51 0 75° | 1097.92]-102.08
15° 594. 44 11.83 2/1 0° | 1200.00 0

J. Acceptability of Tunings

Recognizability of a tuning does not of itself confer
acceptance. When tuned to the frequency ratio 3/2, the per-
fect fifth has always been considered to be consonant; but,
as we have already noted, an interval that is smaller than
3/2 by a syntonic comma is considered to be dissonant and is
not accepted as a substitute for the consonant fifth. Even
more objectionable is the meantone '"wolf fifth," actually
the diminished sixth G#—Eb, which is 35.7 cents larger than

the pure perfect fifth. The major third is universally
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found to be harmonious in just intonation and harsh in Py-
thagorean tuning. It has long been recognized that this sen-
sation of dissonance or harshness results from the beats that
are heard in an approximation of a discernible interval.

The acceptability of a tuning (that is, the acceptability of
an indiscernible interval as a tuning of a discernible in-
terval), then, depends on smoothness (that is, freedom from
disturbing beats) as well as recognizability.

The tones that beat in an approximation of a discerni-
ble interval are the very tones that coincide in the spec-
trum of the interval that is approximated. When the fre-
quency ratio of a discernible interval is altered slightly,
these tones separate to form a near coincidence of adjacent
spectral tones. Such a near coincidence is called here an
adjacency. We recognize two adjacencies as being the prin-
cipal sources of dissonance. First is the adjacency corre-
sponding to the lowest coincidence of two partials presented
in B5 of Chapter 2. Second is the adjacency corresponding
to the highest primary coincidence in the spectrum of the
discernible interval.

As was observed in Chapter 3, Section G, the coeffi-
cients of the tones in the lowest coincidence or adjacency
of two partials are

m' =0, n' = x° = G' J1

m=y°, n=20 J2

The frequencies of these two tones are

f =y°x, f' = x°y J3

3

and their frequency ratio is
£/f" = (vy°x)/(x°y) = Q J4

which is the interval of deviation of x/y from its inter-

pretation x°/y°. Since x° = G', the tone f' is of doubtful
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significance when x° > N,
According to Gl12, G8, and G9 of Chapter 3, the coeffi-
cients of the tones in the highest primary coincidence or

ad jacency are

=]
il
O
3
Il
(]
It

(x° + y° + w)/2 J5
m=y° n=G"-x°<0 J6

The frequencies of these tones are

f =y°x + (G' - x°)y J7
= G'y + (Q - L)x°y I8
f' = G'y J9

and their frequency ratio is
R=f/f'" =1+ (Q - 1)x°/G' J10
When x°/y° is a unison or superparticular interval,

=] o =]

u=x°-y°, G' = x°, and R

i

Q. Otherwise, u < x° - y°,

it

G' < x°, and R # Q unless Q 1. When x/y > x°/y°, Q > 1
and R > Q. When x/y < x°/y°, Q <1 and R £ Q.
Transforming J10 to

R-1=(Q - 1)x°/G! Ji1

helps us to understand the relationship between the two ad-
jacencies whose frequency ratios are Q and R. Under the

present circumstances, Q and R are approximately equal to 1,

Q-1 % 1n Q J12

114

and R -1 1In R J13
Substitution from these equations into J11 results in
ln R € (1n Q)x°/G' J14

which, upon being multiplied by M, becomes
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M log R 2 (M log Q)x°/G' J15

Altho approximate, this equation is truly indicative of the
real relationship.

It was found in Chapter 2, Section B, that the roughness
of the beats depends on the number of cycles per beat, the
center frequency of the beating tones, and the intensity of
the beats. Let

F

It

L(f + £') J16

il

center frequency of the adjacency in cps,
and let At be the period of one beat as in Chapter 2. Then

the number of cycles per beat is

FAt = %(f + £')/|f - £'] J17
= L(f/f' + 1)/|f/f' - 1| J18

Substitution from J4 into this gives us the number of cycles

per beat for the lowest adjacency of two partials:

I

FAt = %(Q + 1)/]Q - 1] J19

i

1/]1n Q| = 1731/|M log Q| J20

Substitution from J10 into J18 gives us the number of cycles

per beat for the highest primary adjacency:

it

FAt = %(R + 1)/|R - 1] J21

e

1/]1n R|] = 1731/|M log R| J22

In order for these adjacencies to produce the sensation
of beats, FAt must be more than about 7.5. By J20 and J22,
this requirement is satisfied when |M log Q| and IM log R|
are less than 231 cents. As long as Q is the deviation of
x/y from its interpretation, it cannot be greater than the
interval between the\interpretation and the applicable point
of division. As can be seen in Table I, the three largest
differences between a discernible interval and an adjacent
point of division are 231 cents between 1/1 and 8/7, 165
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cents between 2/1 and 11/5, and 151 cents between 2/1 and
11/6. This means that [M log Q| < 231 cents as required for
definite beats. For the unison and the superparticular in-
tervals, R = Q and therefore |M log R| < 231 cents. For the
perfect twelfth (3/1), IM log Q| < 151 cnts and, by J15,

lM log R[g 226 cents. Upon checking other intervals, it is
found that Q and R are always within the size limits neces-
sary to produce definite beats.

As the deviation decreases from 231 cents to somewhere
near 30 cents, the number of cycles per beat increases from
7.5 to about 60, and the beats become rougher. For smaller
deviations, the beats are not noticeably rougher. In fact,
as the deviation drops below 20 cents, the beats become more
tolerable and the tuning becomes more acceptable.

The center frequency is not inherent in the size of an
interval. Transposing an interval changes the center fre-
quency and therefore the roughness of the beats; consequent-
ly, beats due to mistuning may be objectionable when an in-
terval is in one range (or octave) of the musical scale and
acceptable when it is in another range. However, a tuning
that is accepted in the middle range is at least tolerated
in lower and higher ranges.

In Chapter 2, Section A, Ir and IS are the respective
intensities of tones r and s of a spectrum, and ZJT;T; is
identified as a measure of the intensity of the beats that
are present when there is a small interval between the tones.
Let I and I' be the respective intensities of tones f and f',
and let I" denote the intensity of the beats. Then, accord-
ing to this measure,

I = 2411 J23

and, by F12 of Chapter 1, the intensity level of the beats

is IL" = 10 log,, (24IT1) + 100
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i

IL" = 10 [log 2 + %(log I + log I')] + 100
10 log 2 + %(10 log I + 100 + 10 log I' + 100)
3 + % (IL + IL') J24

where IL and IL' are the respective intensity levels of

il

il

tones f and f'.

When f and f' are the frequencies of partials, the in-
dexes G and G' are equal to the numbers of the partials, and
F1 and F2 of Chapter 2 become applicable when rewritten in

the form IL = ILy + 6(N - G) J25

IL' = ILN + 6(N - G'") J26
These formulas relate not only to the intensity levels of
partials of typical musical tones but also to the approxi-
mate loudnesses of other spectral tones when the definition
of N is broadened to denote the maximum index of an audibly
significant spectral tone as in Chapter 3, Section F. Sub-

stitution from J25 and J26 into J24 results in

IL" = 3 + %[ZILN + 6(2N - G - G')]
= 3 + ILN + 3[2N - (G + G")]
= IL, + 3[2N + 1 - (G + G')] J27

N
J1 and J2 apply to the lowest adjacency of two partials; and
they give us G = y°, G' = x°, and G + G' = x° + y°. J6 ap-—
plies to the highest primary adjacency; and it gives us
G=m-n=y° -G' + x° or, again, G + G' = x° + y°. Mak-

»

ing this substitution into J27 results in

IL" = ILN + 3[2N + 1 - (x° + y°)] J28

This last equation shows clearly that the intensity,
hence the roughness, of the beats is greater when the ap-
proximated interval is more discernible; but a tuning be-
comes more acceptable when accuracy improves below 20 cents;
therefore, the more discernible intervals must be tuned more

accurately so as to diminish the roughness of the beats.
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Rough approximations of the most discernible intervals (uni-
son and octave) are therefore the most dissonant, and these
intervals are customarily tuned as accurately as possible.
The accuracy of tuning required for other intervals is per-
haps best judged by the ear of the musician as reflected in
the historical record.

The perfect fifth and perfect fourth in equal tempera-
ment with |[M log Q| = 2.0 cents and in meantone temperament
with |M log Q| = 5.4 cents were accepted, whereas the small
per. 5th and the large per. 4th in just intonation with
IM log Q| = 21.5 cents were rejected in spite of easy recog-
nition. The meantone maj. 6th with M log Q = 5.4 cents was
agreeable, but the Pythagorean maj. 6th and maj. 3rd with
M log Q = 21.5 cents were very objectionable. The author
thinks the equally tempered maj. 6th with M log Q = 15.6
cents and maj. 3rd with M log Q = 13.7 cents are merely
tolerated. The meantone min. 3rd with M log Q = -5.4 cents
was easily accepted, but the equally tempered min. 3rd with
M log Q = -15.6 cents and min. 6th with M log Q = -13.7
cents are not only inaccurately tuned but also not easily
recognized. These two cannot be rated as good tunings, but
the relative obscurity of their interpretations results in
weak beats and therfore little roughness.

Meantone temperament provided not only exactly tuned
major thirds but also diminished fourths, whose interpreta-
tions were also 5/4 with Arc = 37° (poor recognizability).
The deviation of these intervals, 41 cents, was known as
"the wolf'" and certainly made them unacceptable as tunings
of a major third. The major third (or dim. 4th) of equal
temperament has just 1/3 the deviation of the meantone dim.
4th. In a book he published in 1739, van Blankenburg re-
ferred to these deviations as '"young wolves, each 1/3 of the

large wolf."6

6. J. Murray Barbour, Tuning and Temperament, p. 120.
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K. Consonance and Dissonance

Consonance and dissonance are regarded here as intrinsic
qualities of harmonic intervals, fixed by the frequency ratio
(or size) of an interval and not affected by high or low po-
sition in the scale. On the other hand, the comparable
gqualities of smoothness and roughness vary with the range in
which an interval is located. It is thus possible for con-
sonant intervals to be rough in the low bass range (below 3C)
and for dissonant intervals to be smooth in the high treble
range. In the middle range, however, dissonance and rough-
ness are practically the same.

An interval exhibits the quality of dissonance when,
and only when, it is close in size to a sufficiently dis-
cernible interval. This happens not only when the dissonant
interval is indiscernible and the proximate discernible in-
terval is its interpretation but also when the interval
sounded is a point of division or even another discernible
interval. An interval is consonant when it is not dissonant,
that is, when the proximate discernible intervals are not
discernible enough or not near enough in size to the interval
sounded to create objectionable beats. The most consonant
intervals, then, are the unison and the octave. The dis-
cernible intervals that are nearest the unison in size are
those whose frequency ratios are 7/6 and possibly 8/7, but
they are among the least discernible intervals and differ
from the unison by 267 and 231 cents respectively. The dis-
cernible intervals nearest the octave in size are 9/5, 9/4,
and possibly 11/5; but they, too, are among the least dis-
cernible intervals and differ from the octave by 182, 204,
and 165 cents. In contrast, the most dissonant intervals
are those that approximate the most discernible intervals.

Thus the major and minor seconds, the major seventh, and the
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minor ninth are the most dissonant familiar intervals be-—
cause of their proximities to the unison and the octave.

Hence proximate discernible intervals can truly be re-
garded as potential sources of dissonance in the interval
sounded, and we can say with Helmholtz”? that discernible
intervals '"disturb' other intervals that approximate them in
size. In general, not all proximate discernible intervals
contribute equally to the dissonance of x/y, the interval
sounded, and it is important to know which are responsible
for the greatest or predominant disturbance. The two most
disturbing intervals are easily related to x/y when regarded
as base intervals of a nucleus, and there are two cases cor-
responding to whether x/y is or is not an acceptable tuning
of a discernible interval.

If x/y is not an acceptable tuning of a discernible in-
ferval, let x'/y' and x"/y'" be consecutive discernible in-
tervals respectively smaller and larger than x/y as in D3.
Being conjoint, they are base intervals of a true nucleus,
and both are potential sources of dissonance in the interval
sounded. If also x/y is not the point of division, one of
the base intervals is its interpretation, and the other is
its adjunct. If x/y is easily or fairly recognizable but
not acceptable as a tuning of its interpretation, it is dis-
turbed more by the interpretation than by the adjunct. If
x/y approximates the point of division and therfore is hard-
ly recognizable as a tuning of its interpretation, it is
disturbed almost equally by both base intervals. Under
these conditions, the disturbance is greater when the magni-
tude of the deviation |M log Q| is less and when the inter-
pretation is more discernible.

That x'/y' and x'"/y'" are the proximate discernible

7. Sensations of Tone, pp. 186-187.




174 Ch. 4

intervals most disturbing to x/y can hardly be doubted if it
is true that the intervals that give rise to the slower beats
contribute more to the dissonance of x/y. The intervals in-
termediate to x'/y' and x"/y'" are not discernible and there-
fore cannot disturb x/y. To be as disturbing as x'/y' if
possible, any smaller interval would have to be conjoint to
x'/y' so that no intermediate interval could be more dis-
cernible, and it would have to be more discernible than x'/y'
because it would differ more in size from x/y. Such an in-
terval is (x'i' - x")/(y'i' - y"), where i' is a small posi-
tive integer, usually 1 or 2. If it does not differ too
greatly in size from x/y, it will induce beats at the rate
of (y'i' - y")x - (x'i' - x")y per second. In terms of g"
and g' as defined in E3 and E4, this equals g"i' + g', which
is greater than either g" or g' as long as x'/y' < x/y <
x"/y". To proauce a disturbance comparable to that of x'"/y'",
any larger interval should be conjoint to and more discerni-
ble than x”/y”.‘ Such an interval is (x"i" - x'")/(y"i" - y'),
where i'" is a small positive integer, usually 1 or 2. If it
does not differ too greatly in size from x/y, it will induce
beats at the rate of (x"i" - x')y - (y"i" - y')x per second.
In terms of g' and g'", this equals g'i" + g'", which is
greater than either g' or g'" as long as x'/y' < x/y < x"/y".
Relations like these between the intervals and the rates of
beating are illustrated in Figure 1.

There it is easily seen that, since xX/y is intermediate
in size to the two base intervals, any beats induced by the
"outside'" intervals (x'i' - x")/(y'i' - y") and
(x"i" - x")/(y"i" - y') would be faster and therefore proba-
bly less disturbing than those resulting from x'/y' and
x"/y". It is not thought, however, that beats induced by
outside discernible intervals are without effect. If, as in

Figure 1, x'/y' is more discernible than x'"/y", and if
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gH
i" =1
giill + gl!
X'i' — X" X' X X” X”i” — Xl
y’i' - yn F ; S,'Tv’ ynin — yl
Figure 1. Relative rates of beating induced by discernible

intervals that are approximated by x/y. g'" is the rate of
beating induced by x'/y', g' is that due to x"/y", and so
forth. Here x'/y' is more discernible than x'/y".

y' > 1, then i" =1, i' > 1, and (x"i" - x'")/(y"i" - y') is
conjoint to x'/y' as well as x"/y" and induces slower and
more disturbing beats than (x'i' - x")/(y'i' - y"). If, on
the other hand, x'"/y" is more discernible than x'/y', then
i' =1, i" > 1, and (x'i' - x")/(y'i' - y") is conjoint to
x"/y" as well as x'/y' and induces the slower and more dis-
turbing beats. In summary, we can say that the outside in-
terval conjoint to and more discernible than the less dis-—
cernible base interval is conjoint to both base intervals,
and the beats that it induces are slower and probably more
disturbing to x/y than those due to the other outside inter-
val and may have a marked effect on the dissonance of x/y.
Table VIII lists some indiscernible intervals that

deviate from their interpretations by a comma and are there-
fore unacceptable tunings thereof. With each of these it

also lists the base intervals respectively smaller and
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Table VIII

Certain Indiscernible Intervals and the Proximate
Discernible Intervals that Disturb Them

P denotes Pythagorean tuning; J, just intonation; and E,
equal temperament. The asterisks mark the interpretations
of the given unacceptable tunings.

Name of % x'i'= x" Base intervals K- x! Arc in | M log Q

interval §‘ ‘;;Ejtfg;? X'yt x"/y" SFFFT:7§T degrees | in cents
P min. 6th|{128/81 3/2 | *8/5 5/3 58.4 -21.5
P min. 3rd| 32/27 7/6 | *6/5 5/4 56.3 -21.5
Pmaj. 3rd| 81/64 *5/4 4/3 17.1 21.5
P maj. 6th| 27/16 3/2 *5/3 7/4 14.0 21.5
J lrg. 4th| 27/20 *4/3 7/5 3/2 11.3 21.5
J snl. 5th| 40/27 4/3 7/5 | *¥3/2 84.8 -21.5
P min. 7th| 16/9 5/3 7/4 9/5 2/1 45.0
E min. 6th|1.5874 3/2 | *8/5 5/3 70.2 -13.7
E min. 3rd{1.1892 7/6 | *6/5 5/4 68.2 -15.6
E dim. 5th|1.4142 4/3 *7/5 3/2 22.5 17.5

larger than the named intervals, and the outside discernible
intervals that are near enough in size to the given indis-
cernible intervals to affect their consonance or dissonance.
The Pythagorean major third and major sixth and the just
large fourth and small fifth are not hard to recognize as
tunings of their interpretations. It follows that their
dissonance is traceable primarily to their interpretations;
and, since the deviations are of equal magnitude, the inter-
vals whose interpretations are more discernible are the more
dissonant. They are listed in order of increasing discerni-
bleness of their interpretations therefore in order of in-
creasing dissonance. The influence of the outside intervals
is minor; but, even so, it is such as to increase the com-
parative dissonance of the fourth and fifth.

Since the Pythagorean minor 6th and minor 3rd approxi-

mate the points of division between their respective base
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intervals, they are disturbed almost as much by their ad-
juncts as by their interpretations. The interpretation of
the minor 6th is less discernible and therefore less dis-
turbing than that of the minor 3rd, but the adjunct of the
minor 6th is much more disturbing than that of the minor

3rd. Furthermore, the outside interval of the sixth, being
conjoint to both base intervals, must be the more disturbing.
It should not cause wonder, then, that the Pythagorean minor
6th sounds more dissonant than the Pythagorean minor 3rd.

The equally tempered minor 6th and minor 3rd, having
deviations less than 20 cents in magnitude, are more conso-
nant than the corresponding Pythagorean intervals; but they
are still not acceptable and only moderately recognizable as
tunings of their interpretations. Consequently, they are
disturbed more by their interpretations than by their ad-
juncts. This tends to make the minor third the more disso-
nant because of the greater discernibleness of its interpre-
tation, but the adjuncts and the outside intervals disturb
the minor 6th more and thus ensure that it remains more dis-
sonant than the minor third.

Let it be given that two indiscernible intervals have
equally discernible interpretations, and let them deviate
from their interpretations by different amounts. Then, if
one deviates by at least 20 cents and the other by more than
30 cents, the one for which the deviation is less is the
more disturbed. If one deviates by less than 20 cents and
the other by no more than 30 cents, the one for which the
deviation is greater is the more disturbed. This rule ap-
plies also to negative deviations if only their magnitudes
are considered. The equally tempered diminished 5th devi-
ates more from its interpretation than the minor 6th does;
but both intervals deviate by less than 20 cents; therefore,

if they had equally discernible interpretations, the dim.
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5th would be the more disturbed by reason of its greater de-
viation. However, the dim. 5th has a more discernible in-
terpretation and, because of this, is disturbed still more
than the minor 6th is by its interpretation. Both intervals
have the same adjunct, and their outside intervals are about
equally disturbing. Therefore, it is not hard to see why
the dim. 5th is considered to be the more dissonant.

If x/y is a point of division, it is not an acceptable
tuning of either of the two discernible intervals conjoint
to it (and to each other). Both give rise to the same rate
of beating, and the deviation of x/y from the more discerni-
ble conjoint interval is the greater. Therefore, the dis-
turbance due to one differs little, if any, from that due to
the other. The Pythagorean minor 7th exemplifies this and
provides an interesting comparison with the P minor 3rd.

Its deviation from 7/4 is 27.3 cents and from 9/5 is -21.5
cents, exactly the same as the deviations of the P minor 3rd
from its base intervals. Furthermore, 7/4 and 6/5 are
equally discernible, and 9/5 and 7/6 are almost equally dis-
cernible. Taking these factors into consideration and ig-
noring the influence of the outside intervals would lead one
to conclude that these two intervals have virtually the same
degree of dissonance. The outside intervals 5/3 and 5/4
have essentially the same minor influence on both intervals,
but the octave 2/1, being highly discernible and conjoint to
both base intervals, lends a decisive increase to the disso-
nance of the minor 7th in spite of a difference in size of
204 cents. Because of this, the minor 7th has always been
judged to be more dissonant than the minor 3rd.

If x/y is an acceptable tuning of a discernible inter-
, let this interval be the apex x°/y° of a nucleus, let
x'/y' be the largest discernible interval smaller than x°/y°,
and let x"/y'" be the smallest discernible interval larger

val
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than x°/y°. Then x'/y' and x"/y" are conjoint to x°/y°
and, being so, are the base intervals of the nucleus and
potential sources of dissonance in x/y. On the other hand,
it is a precondition to acceptance as a tuning that x/y dif-
fer from x°/y° so little, if any, as to be disturbed little,
if at all, by x°/y°. Because of this, our study of the dis-
sonance of acceptable tunings of discernible intervals will
not be concerned with differences between x/y and x°/y°,
altho it is recognized that they exist.

That there is a special need for the base intervals to
be conjoint to the apex can be shown as follows. If x/y is
an exact tuning of x°/y°,

o

X = gx° and y = gy K1

where g is not only the fundamental frequency of the third
tone but also the common difference between successive fre-
quencies of the spectrum. Any beats heard in x/y, then,
must have a fundamental rate of beating equal to g. 1In Sec-
tion E, g" is identified as the rate of beating that is
heard when x/y approximates x'/y'. Supposing that x'/y' is
a proximate discernible interval that disturbs x/y, we sub-
stitute from K1 into E3 with the result

I

g(y'x® - x'y?%)
= gi” K2

gll

and it is seen that g" is the fundamental rate of beating
only when i" = 1, If x"/y" is thought to disturb x/y, we
substitute from K1 into E4 with the result

il

gly°x" - x°y")
= gi' K3

g '

and it is seen that g' is the fundamental rate of beating
only when i' = 1. 1In either case, then, the beats arising

from the base intervals have the fundamental rate only when
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they are conjoint to x°/y°.

Any outside intervals must also be conjoint to the apex
for the same reason. Therefore, the outside interval smal-
ler than x'/y' is (x' - x°)/(y' - y°), the one larger than
x"/y" is (x" - x°)/(y" - y°), and there will be an outside
interval only when the apex is more discernible than the in-
tervening base interval, Two apparent consequences (or prin-
ciples) follow from the fact that these proximate discernible
intervals are conjoint to x°/y° and therefore give rise to
one same rate of beating. First, they contribute equally or
almost equally to the dissonance of x°/y°. Second, the dis-
turbance from two or more of these intervals appears not to
be cumulative, so that the dissonance induced by all is the
same as that rising from any one as if it were the only one.
While lacking direct proof of these two principles, the au-
thor is able to get consistent results in using them to de-
termine which of two discernible intervals is the more dis-
sonant. These results are displayed in Table IX, where the
intervals x°/y° are given in what is intended to be the or-
der of increasing dissonance.

No proximate discernible intervals are given for the
unison (1/1) because their number is limited by setting N
equal to 7 and by requiring them to differ from x°/y° no
more than 231 cents (a frequency ratio of 8/7). Thus no dis-
sonance is ascribed to the unison. In comparing the disso-
nance (or consonance) of the octave (2/1) with that of the
twelfth (3/1), we note that the difference (182.4 cents) be-
tween 9/5 and 2/1 is the same as that between 3/1 and 10/3.
However 10/3 is more discernible than 9/5 and therefore dis-
turbs 3/1 more than 9/5 disturbs 2/1. Likewise 8/3 disturbs
3/1 more than 9/4 disturbs 2/1. These two findings are con-
sistent and indicate that 3/1 is more dissonant (or less

consonant) than 2/1. The difference (203.9 cents) between
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Table IX

Discernible Intervals and the Proximate
Discernible Intervals that Disturb Them
The intervals x°/y° listed here are discernible with N = 7
and are less than or equal to two octaves in size. Any in-
terval that differs from x°/y° by more than 231 cents is not

regarded as a disturbance. Here Q' = (y'x°)/(x'y°), and
Q" = (y°x")/(x°y").
x' - x° x" M x° M x" x" - x°
y' - v° y' log Q' y° log Q" y" y' - vy°
1/1
7/4 9/5 182.4 2/1 203.9 9/4
8/3 203.9 3/1 182.4 10/3
7/2 11/3 150.6 4/1 203.9 9/2
4/3 7/5 119.4 3/2 111.7 8/5 5/3
7/3 119.4 5/2 111.7 8/3
10/3 84.5 7/2 80.5 | 11/3 4/1
5/4 111.7 4/3 84.5 7/5 3/2
3/2 8/5 70.7 5/3 84.5 7/4
9/4 63.0 7/3 119.4 5/2
5/2 111.7 8/3 203.9 3/1
6/5 70.7 5/4 111.7 4/3
3/1 182.4 | 10/3 84.5 7/2
7/2 80.5 | 11/3 150.6 4/1
5/3 84.5 7/4 48.8 9/5 2/1
7/6 48.8 6/5 70.7 5/4
2/1 203.9 9/4 63.0 7/3
4/3 84.5 7/5 119.4 3/2
3/2 111.7 8/5 70.7 5/3
7/6 48.8 6/5
7/4 48.8 9/5 182.4 2/1
8/3 and 3/1 is the same as that between 4/1 and 9/2. Fur-

thermore, 8/3 and 9/2 are equally discernible. This indi-
cates that 3/1 and 4/1 must be equally dissonant and that
4/1, like 3/1, must be more dissonant than 2/1. Also, a

direct comparison of 4/1 with 2/1 confirms this latter con-

clusion.
To compare 3/2 with 4/1, we note that 7/5 and 8/5 are
more discernible that 11/3 and differ less from 3/2 than
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11/3 does from 4/1, that 5/3 is more discernible than 7/2
and differs less from 3/2 than 7/2 does from 4/1, and that
4/3 is more discernible than 9/2 and differs exactly the
same from 3/2 as 9/2 does from 4/1. In all these compari-
sons, the differences are such as to indicate beyond doubt
that 3/2 is more dissonant than 4/1. It is easily seen that
5/2 and 7/2 are more dissonant than 3/2, but direct compari-
son of 7/2 with 5/2 offers no clear answer. However, 4/3 is
definitely more dissonant than both 5/2 and 7/2. Compari-
sons like these thus establish largely the order of increas-
ing dissonance of the intervals x°/y°. It is to be noted
that this is also roughly but not strictly the order of de-
creasing discernibleness (or increasing obscurity), in-
creases in dissonance usually being marked by increases in
X°® + y°.

The Pythagorean maj. 3rd and maj. 6th and the just
large 4th and small 5th are listed in the order of increas-
ing dissonance in Table VIII. The interpretations of these
intervals are listed in the opposite order in Table IX,
which is also judged to be the order of increasing disso-
nance. Such can be the effect of tuning or mistuning. When
reference is made to the consonance or dissonance of a fa-
miliar consonant interval without specifying how it is
tuned, it is perhaps best to assume that it is at least an
acceptable tuning of its interpretation.

The consonance or dissonance of an interval has been an
object of considerable interest from antiquity. In order to
do justice to the subject, then, the author offers the fol-
lowing brief history. According to the Pythagorean theory
of consonance, '"the simpler the ratio of the two parts into
which the vibrating string is divided, the more perfect is
the consonance of the two sounds."8 This simple observation

may have had the effect of a definition of the term, but its
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application has not run a smooth course. Aristoxenus (4th
century B.C.), who took issue with the followers of Pytha-
goras, preferred to make absolute distinctions, calling the
unison, octave, fifth, and fourth consonances (or concords)
and the other intervals dissonances (or discords), except
that the expansion of consonant intervals by octaves did not
alter their condition of consonance.? This classification
nevertheless respected the Pythagorean theory in that the
"consonant'" intervals have simpler ratios than the other in-
tervals. This opinion regarding consonance and dissonance
was also held by the western Europeans during the early sta-
ges of organum (9th, 10th, and 11th centuries A.D.), when
they too considered the unison, octave, fifth, and fourth to
be consonant and the other intervals to be dissonant.

In the twelfth century, the perfect fourth came to be
regarded by some as a dissonance. Franco of Cologne (13th
century) once again classified the fourth as a consonance
but at the same time accepted the major and minor thirds as

consonances.10 His complete classification is as follows:

perfect consonances -— unison
octave
medial consonances -— fifth
fourth
imperfect consonances -- major third
minor third
imperfect dissonances -- major sixth

minor seventh
ma jor second

8. Dayton C. Miller, Anecdotal History of the Science of
Sound, p. 3. Pythagoras lived in the 6th century B.C.

9. The Harmonics of Aristoxenus, ed. and tr. by H.S. Macran.

10. Magistri Franconis, Ars Cantus Mensurabilis, Cap. XI, in
Scriptorum de Musica Medii Aevi, ed. by E. de Coussemaker,
vol. I, p. 129. See also Strunk, Source Readings in Music

2

History, pp. 152-153.




184 Ch. 4

perfect dissonances -— minor sixth

tritone

minor second

major seventh
Here we see a closer approach to the Pythagorean idea in
that different degrees of consonance and dissonance are dis-
cerned and that in general the intervals with simpler ratios
are considered more consonant.

Philippe de Vitri and Jean de Muris (14th century) ele-
vated the fifth to the rank of perfect consonance, regarded
the fourth as a dissonance, and included two more intervals,
the major and minor sixths, among the imperfect consonan-
ces. 11 Soderlund,12 in describing the sixteenth century
style, gives essentially the same classification; and Fux13

(18th century) gives exactly the same:

perfect consonances —-— unison
octave
fifth

imperfect consonances -- major third

minor third

ma jor sixth

minor sixth
dissonances -- major second

minor second

perfect fourth

tritone

ma jor seventh

minor seventh

According to Pistonl4 this classification was observed in

11. Philippum de Vitriaco, Ars Contrapunctus, p. 27, Johan-
nem de Muris, Ars Contrapuncti, p. 60, and Ars Discantus,
p. 70, in Scriptorum de Musica Medii Aevi, ed. by E. de
Coussemaker, vol. III.

12. Direct Approach to Counterpoint, p. 23.

13. Steps to Parnassus, ed. and tr. by Alfred Mann.
14. Harmony, p. 6.



Sec. K 185

the common practice of the nineteenth century also, giving
it five centuries of recognition.

Helmholtz (late nineteenth century) regarded the fourth
as a perfect consonance and the major sixth and major third
as medial consonances.1d Stumpf (same period), using a psy-
chological approach and the term fusion instead of conso-
nance, and determining the rank of the intervals by the
vibration ratios of the tones, distinguished five grades of

fusion, as follows:16

first grade -— octave

second grade -- fifth

third grade —-— fourth

fourth grade -- thirds and sixths
fifth grade -— the other intervals

Various psychologists have made studies of consonance
in which intervals within the range of an octave were com-
pared by a jury of observers for the purpose of arriving at
their relative degrees of consonance. Malmberg, for example,
using the terms smoothness, purity, and blending instead of
consonance, achieved the following '"order of merit of inter-

val in the consonance-—-dissonance series':17

1. Octave 7. Minor third

2. Fifth 8. Diminished fifth
3. Major sixth 9. Minor seventh

4, Major third 10. Major second

5. Fourth 11. Major seventh

6. Minor sixth 12. Minor second

A reluctance to recognize the major sixth as a medial
consonance is evident in the historical account; but most
enigmatic is the perfect fourth, which was considered a con-

sonance until the twelfth century and then became a source

15. Sensations of Tone, p. 194.
16. As quoted by Schoen, The Psychology of Music, pp. 48-49..

17. As quoted by Seashore, Psychology of Music, p. 132.
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of divided opinion which persists even today. Piston points
out that it was regarded as consonant when another tone was
below its lower tone, which appears to weaken its character
as a dissonance.l8 This confusion in regard to an interval
so closely related to the perfect fifth, regarding which
there has been no marked disagreement, must come from some
faulty basic assumption; and that assumption is, in the
author's opinion, that expanding an interval by one or more
octaves does not change its degree of consonance or disso-

nance. This assumption dates back at least to Aristoxenus,

and he made it clear in his Elements of Harmony that he did
not care for fine distinctions in regard to this subject.
Everyone has been willing to distinguish the consonance
of an interval from that of its octave inversion, but few
besides Helmholtz have been willing to distinguish the con-
sonance of an interval from that of its octave expansion.
Yet the process of inverting an interval smaller than an oc-
tave differs from the process of increasing its size by an
octave only in regard to which of its tones is raised or
lowered an octave. Raising its upper tone an octave might
conceivably produce just as much change in consonance as
raising its lower tone. Starting with the twelfth, whose
ratio (3/1) shows it to be the most consonant of the so-
called "fifths," we can, by successively raising the origi-
nal lower tone by octaves, pass from undisputed ground into
controversial territory. The first raising produces the
fifth (3/2); the second raising, the fourth (4/3); the third

raisng, the eleventh (8/3); and so forth. The process of

18. The regular association of dissonance with '"nonharmonic
tones'" from the 15th century thru the 19th has, in the
author's estimation, caused many musicians to think of dis-
sonance as a function rather than a quality. This could ex-
plain the dual classification, since the fourth admits of
both "harmonic' and ''monharmonic' functions.
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inverting the fifth to a fourth now appears merely as part
of a larger process, and the series above appears to the
author as gradually increasing in dissonance and not as sud-
denly changing from consonance to dissonance at the point of
inversion.

It is also obvious from this series that the difference
in degree of consonance between the 11th and 12th is much
greater than that between the 4th and 5th. Therefore, it is
to be expected, since no distinction was made between an in-
terval and its octave expansion, and since much distinction
was made between an interval and its inversion, that the de-
gree of dissonance proper to the 11th came to be attributed
at least in part to the 4th. According to our findings in
Table IX, the 11th (8/3) is definitely more dissonant than
the 4th (4/3); therefore, to attribute the dissonance of the
11th to the 4th would be to exaggerate the dissonance of the
4th by an appreciable amount. Likewise, the 11th is more
dissonant than either the major 10th or the 12th; and, by
analogy, the 4th could have come into a usage that treated
it as being more dissonant than either the major third or
the fifth. 1In the 14th century, the consistent use of in-
tervals as large as the 11th and 12th in oblique and con-
trary motion began to appear; therefore, it is logical that
from that time, the fourth being considered the same in
musical practice as the eleventh, and the fifth the same as
the twelfth, a greater difference in consonance has been
attributed to the fourth and fifth than a direct comparison

would warrant.
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INDEX OF SYMBOLS

The chapter, section, and equation number where it is
first defined or introduced are given after each symbol.

A 4C16 An interpolation between x' + y' and x" + y'".

Arc 4G2 An angle relating x/y to x'/y', x"/y'", and their
point of division.

b 2F Degree of a primary tone or an aural harmonic.
4H Greatest common divisor of x' and x".

4H Greatest common divisor of y' and y".

0 o » ®

1F Speed of sound in air.

cps 1A Cycles per second.

D 1F Density of air at atmospheric pressure.

d 1F Differential of a variable,.

db 1F Decibels.

F 4J16 Center frequency of two beating tones.

f 2F Frequency of a tone in the aural spectrum.
f° 3A8 Frequency number of the tone of frequency f.
£ 3C1 Frequency of another spectral tone.

f'® 3C2 Frequency number of the tone of frequency f'.

G 3Bl Loudness index of mx + ny.

G' 3D1 Loudness index of m'x + n'y.

g 3A Greatest common divisor of x and y when they are
commensurable.

g' 4E4 The rate of beating when x/y approximates x'"/y".

g'" 4E3 The rate of beating when x/y approximates x'/y"'.

H 2A24 Average intensity of an intertone.

I 1¥6 Sound intensity. Work done per second.

I, 1F Reference intensity.

IL 1F11 Intensity level.

i 4A1 A determinant relating x"/y" to x'/y'.

it 4A2 A determinant relating x'"/y" to x°/y°.

i 4A3 A determinant relating x°/y° to x'/y'.
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3C

1G
1B
4F11

2E
3C
2F

3F

1G
2A
2E
3C
24
1G6
2A
1G14
1F
41

2A
1B
4J10

1G

2A

2A25
1B
1G
1E

Symbols

The greatest common divisor of m — m' and n' - n
when the tones coincide.

Integer or integral variable.
Natural logarithm -- log to the base 2.718282...

1200/1log 2 —-- the modulus for conversion to cents.
See also Ch. 1, Sec. B.
Coefficient of x. Integer.

Another coefficient of x.

Number of audible partials in a typical musical
tone.

Maximum index of an audibly significant spectral
tone.

Number of partials in a complex tone.
Number of tones in a spectrum.
Coefficient of y. Integer.

Another coefficient of y.

Phase angle of the intertone.

Phase angle of partial r.

Phase angle of tone r.

Phase angle of partial s.

Excess air pressure due to sound.

The interval by which x/y deviates from its inter-
pretation.

Phase displacement.
Frequency ratio of a unit interval.

Frequency ratio of the tones in the highest pri-
mary adjacency.

1, 2, 3, ... n. Integers denoting partials of a
complex tone.

1, 2, 3, ... n. Integers denoting tones of a
spectrum.

Salient frequency of an intertone.
Size of an interval.

(See r,s)

- Time when maximum velocity of the rth partial or

tone is first reached.
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t 1E Time.,
r 1E Displacement amplitude of a partial tone.
U, 1E A static displacement of air particles due to
sound.
u 1E Displacement of air particles due to sound.
\Y 2A Velocity amplitude of the infertone.
Vr 1E Velocity amplitude of a partial tone.
2A Velocity amplitude of a tone of a spectrum.
v 1E Velocity of air particles due to sound.
W 1F Work done by excess air pressure on a unit area of

particles.
Wo 1F5 Work done per cycle.
W 2A3
3A Complex tone of frequency x.

X 1B Frequency in cycles per second of the higher tone
of an interval.
x° 1D X divided by the greatest common divisor of x and y.
X' 4A The greater of a pair of relatively prime integers.
x" 4A The greater of a pair of relatively prime integers.
Y 3A Complex tone of frequency y.
y 1B Frequency in cycles per second of the lower tone
of an interval.
y° 1D y divided by the greatest common divisor of x and vy.
y' 4A The lesser of a pair of relatively prime integers.
y" 4A The lesser of a pair of relatively prime integers.
At 2B Period of one pulsation or beat.
M 3F8 = 0 when x° + y° is even.
= 1 when x° + y° is odd.
™ 1E Ratio of the circumference of a circle to its
diameter.
> 1G Summation sign.
Q 1E1 Frequency in radians per second.

Is approximately equal to.
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INDEX OF FIGURES, TABLES, AND PLOTS

Chapter 1 Chapter 3
Figure Table Plot Page Figure Table Plot Page
1 3 18 100
2 9 19 100
I 11 20 101
3 14 21 108
4 16 22 109
5 19 23 109
6 22 1 110
7 30 24 113
8 30 25 115
I 117
Chapter 2 Chapter 4

Figure Table Plot Page Figure Table Plot Page
L 41 1 125

2 51
2 126

I 58
3 129

3 59
4 132

I1 61
5 137

III 63
I 145

IV 65
4 66 6 152
II 154
III 156
Chapter 3 Iv 157
Figure Table Plot Page A 158
VI 162
1 75 VII 165

2 75
3 77 1 175
VIII 176
4 80 IX 181

5 82

6 88

7 89

8 90

9 92

10 92

11 93

12 93

13 96

14 96

15 97

16 98

17 98
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SUBJECT INDEX

Acoustic spectrum 13
Ad jacency 166
Adjacent spectral tones

81, 143, 166

Ad junct 173
Apex 160
Arc 153
Aural harmonics 13, 56
Aural spectrum 57
Base intervals 123
Basic range 79, 113
Beats 39, 45, 142 166
Best beats 56
Cent 7, 150
Center frequency 50, 168
Classes of tones 56
Coefficients of x and y
58, 72
Coincidences 1, 15, 80, 116
Combination tones 56
Comma, 6
Commensurable intervals
17, 72
Complex tone 9
Component frequency 47, 50
Conjoint intervals 133
Consecutive discernible
intervals 141
Consonance 165, 172
Continuity 95, 116
Decibel 25
Degrees of relationship 57
Deviation 163, 169
Diesis 7
Difference tones 13, 57
Discernible intervals 116
Discernibleness 117
Dissonance ) 165, 172
Disturbance 173

Ditone 6

Effective tone
38, 64, 70, 73

b4

Equal temperament 17, 157
Frequency number 73
Fundamental 8
Fundamental frequency 118
Gap 104, 116
Generating tone 56-57
Harmonic interval 2
Harmonic series 8
Harmonics 8
Identical frequencies 70
Incommensurable intervals 17
Index 64, 76, 83
Intensity 23
Intensity level 25
Intensity profile 60
Interference 38
Interference terms 43
Interpretation 141, 153
Intertone 39
Interval 1

Just intonation 6, 15, 155

Loudness 1, 23, 25
Loudness index 76, 83
Loudness profile 59, 67
Masking 70
Meantone temperament 155
Minimum-frequency tones 79
Minimum-index tones 90
Mistuning 141
Modulation 53
Modulus 150
Negligible tones 97
Nucleus 148, 150, 159
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Octaves on the piano 12
Outside intervals 174
Overtone 10
Partial tones 8
Pendular vibrations 9
Periodic functions 9, 18
Peripheral tones 95, 99
Phase 26
Phase angle 28, 39
Pitch 3, 18
Point of division 144

Primary coincidences
106, 116, 166

Primary tones 56
Pseudo nucleus 160
Pure tones 10, 21
Pythagorean tuning

6, 154, 155
Rate of beating 45, 52
Repetition rate 13

Roughness 50, 168, 170, 172
Rule of common factors 125

Schisma 7
Secondary tones 57
Semitone 7
Significant tones 97
Simple tones 10, 21
Size of an interval 6
Smoothness 166, 172
Steady tones 19
Subjective tones 57
Summation tones 57
Superparticular interval

149, 161
Superparticular ratio

110, 149
Tempered intervals 155-158
Third tone 118
Timbre 1, 10, 12, 32-33, 35
Tone 1, 6
Tone quality ) 1, 9, 35
Tritone 6

Tuning 6, 52-53, 141

Subject Index

Upper partials 8
Vibrato 33-37
Wolf 7, 171
Wolf fifth 165
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